SILABUS PROGRAM STUDI MAGISTER (S2) KURIKULUM ITS 2023 – 2028

DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2023

Program Studi	Teknik Kimia
Jenjang Pendidikan	Magister (S2)

Kode	Deskripsi Capaian Pembelajaran Lulusan (CPL)		
CPL-1	CPL-1 ITS dalam aspek sikap		
	Mampu menunjukkan sikap dan karakter yang mencerminkan: ketakwaan kepada Tuhan Yang Maha Esa, etika dan integritas, berbudi pekerti luhur, peka dan peduli terhadap masalah sosial dan lingkungan, menghargai perbedaan budaya dan kemajemukan, menjunjung tinggi penegakan hukum, mendahulukan kepentingan bangsa dan masyarakat luas, melalui kreatifitas dan inovasi, ekselensi, kepemimpinan yang kuat, sinergi, dan potensi lain yang dimiliki untuk mencapai hasil yang maksimal.		
CPL-2	CPL-2 ITS dalam aspek KU sesuai dengan jenjang pendidikan		
	Mampu mengembangkan dan memecahkan permasalahan ilmu pengetahuan dan teknologi dalam bidang keilmuan nya melalui riset dengan pendekatan inter atau multidisiplin hingga menghasilkan karya inovatif dan teruji dalam bentuk tesis dan makalah yang telah diterima di jurnal ilmiah nasional terakreditasi atau diterima di seminar internasional bereputasi		
CPL-3	CPL-3 ITS dalam aspek KU		
	Mampu mengelola pembelajaran diri sendiri, dan mengembangkan diri sebagai pribadi pembelajar sepanjang hayat untuk bersaing di tingkat nasional,		

	maupun internasional, dalam rangka berkontribusi nyata		
	untuk menyelesaikan masalah dengan		
	mengimplementasikan teknologi informasi dan		
	komunikasi dan memperhatikan prinsip keberlanjutan		
CPL-4	CPL dalam aspek KK didefinisikan oleh Prodi (jumlah		
	lebih dari 1)		
	Mampu melakukan pendalaman atau perluasan keilmuan		
	di bidang proses, sistem pemrosesan, dan peralatan yang		
	diperlukan untuk mengubah bahan baku menjadi produk		
	yang mempunyai nilai tambah dengan proses secara kimia,		
	fisika dan biologi untuk memberikan kontribusi original dan		
	teruji melalui riset secara mandiri;		
CPL-5	CPL dalam aspek KK didefinisikan oleh Prodi (jumlah		
	lebih dari 1)		
	Mampu memformulasikan ide-ide baru (new research		
	question) dari hasil riset yang dilaksanakan untuk		
	pengembangan ilmu dan teknologi di bidang proses, sistem		
	pemrosesan, dan peralatan yang diperlukan untuk		
	mengubah bahan baku menjadi produk yang mempunyai		
	nilai tambah dengan proses secara kimia, fisika dan biologi.		
CPL-6	CPL dalam aspek Pengetahuan didefinisikan oleh Prodi		
CI L O	(jumlah lebih dari 1)		
	0		
	Menguasai teori sains dan rekayasa, rekayasa		
	perancangan, metode dan teknik terkini yang diperlukan		
	untuk analisis dan perancangan proses, sistem		
	pemrosesan, dan peralatan yang diperlukan untuk		
	mengubah bahan baku menjadi produk bernilai tambah		

DAFTAR MATA KULIAH PROGRAM MAGISTER

No	Kode MK	Mata Kuliah (MK)	Jumlah sks	
		Semester I		
1	TK 235101	Thermodinamika Teknik Kimia Lanjut	4	
2	TK 235102	Matematika Teknik Kimia Lanjut	4	
3	TK 235103	Pilihan I: Sintesa Proses Lanjut	3	
	Total SKS Semester I 11			
Semester II				

1	TK 235201	Transport Phenomena Lanjut Lanjut	4
2	TK 235202	Teknik Reaksi Kimia Lanjut	4
3	TK 235xxx	Pilihan II	3
	Total SKS Semester II		11
Semester III			
1	TK 235xxx	Pilihan III	3
2	TK 235xxx	Pilihan IV	3
	Total SKS Semester III		6
Semester IV			
1	1 TK 235401 Tesis		8
Total SKS Semester IV			8
Jumlah Total SKS			36

Tesis TK185401

No	Semester	Deskripsi	SKS
1	II	Proposal	
2	III	Laporan Kemajuan	
3	IV	Internasional Seminar Bereputasi	
4	Ujian akhir		
Total SKS tesis		8	

DAFTAR MATA KULIAH PILIHAN

	DIN TIME WITTE ROLLING TELEVISION		
No.	Kode MK	Nama Mata Kuliah (MK)	SKS
1	TK235103	Proses Pemisahan Lanjut	3
2	TK235104	Teknologi Partikel	3
3	TK235105	Analisis Sistem Termal	3
4	TK235203	Reaktor Biokimia	3
5	TK235204	Pengelolaan Limbah Industri Lanjut	3
6	TK235205	Komputasi Dinamika Fluida	3
7	TK235301	Teknologi Membran	3
8	TK235302	Pengolahan dan Pemanfaatan Batubara	3
9	TK235303	Teknik Reaksi Elektrokimia	3
10	TK235304	Katalis Heterogen	3
11	TK235305	Teknologi Aerosol	3
12	TK235306	Pemrosesan Gas Alam	3
13	TK235307	Proses Pembakaran Lanjut	3
14	TK235308	Teknologi Polimer	3
15	TK235309	Metodologi Penelitian	3
16	TK235310	Pengendalian Multi Variabel Lanjut	3
17	TK235311	Matematika Teknik Kimia Lanjut	3

	Nama Mata Kuliah	:	TERMODINAMIKA TEKNIK KIMIA LANJUT
Mata Kuliah	Kode Mata Kuliah	:	TK235101
	Kredit	:	4 SKS
	Semester	:	I

Mata Kuliah ini mempelajari teori/model prinsip keadaan terkait dan kontribusi grup pada aplikasi memperkirakan properti murni seperti properti kritis, normal boiling point, tekanan uap dll.; memahami teori pencampuran dan aplikasinya pada persamaan keadaan dalam penentuan PVT sistim biner dan multikomponen; mengaplikasikan teori larutan dalam menyelesaikan masalah dalam Phase Equilibria; mengenal perkembangan model-model thermodinamika dalam perhitungan Phase Equilibria; memahami konstanta komponen, properti termodinamika gas ideal, hubungan PVT: gas dan cairan, campuran.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri:

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEN	MBELAJARAN MATA KULIAH
CPMK-1	Mahasiswa memahami teori/model prinsip keadaan terkait
	dan kontribusi grup pada aplikasi memperkirakan properti
	murni seperti properti kritis, normal boiling point, tekanan
	uap dll.;
CPMK-2	Mahasiswa mampu menjelaskan konsep teori larutan dan
	aplikasinya dalam perhitungan koef fugasitas dan koef
	aktivitas
CPMK-3	Mahasiswa mampu menjelaskan dan menghitung VLE untuk
	sistem multikomponen
CPMK-4	Mahasiswa mampu menghitung koefisien aktivitas untuk
	sistem multikomponen dengan model UNIQUAC dan
	UNIFAC
CPMK-5	Mahasiswa mampu menghitung VLE dengan model-model
	persamaan kubik (EoS) dan pengenalan untuk aplikasi pada
	teknologi super kritis
CPMK-6	Mahasiswa mampu menghitung LLE untuk sistem
an	multikomponen
CPMK-7	Mahasiswa mampu menjelaskan dan menghitung koordinat
	reaksi, kriteria kesetimbangan dan konstanta kestimbangan
	serta hubungannya dengan komposisi dan konversi pada
an	reaksi kimia.
CPMK-8	Mahasiswa mampu menghitung efisiensi proses atau loss of
	work pada proses di Industri Kimia

POKOK BAHASAN

- 1. Metode/model dalam memperkirakan properti murni seperti properti kritis, normal boiling point, tekanan uap dll.
- 2. Hubungan antar properti thermodinamika.
- 3. Persamaan keadaan untuk prediksi dan korelasi komponen murni dan campuran.
- 4. Aplikasi hukum I dan II untuk perhitungan efisiensi proses atau loss of work pada proses di Industri Kimia
- 5. Teori Larutan.
- 6. Analisa persamaan-persamaan untuk koefisien aktifitas.
- 7. Perhitungan kesetimbangan dengan metode koefisien aktifitas dan persamaan keadaan.
- 8. Kesetimbangan reaksi kimia
- 9. Thermodinamika untuk pemisahan super kritis dan campuran yang mengandung polimer

PRASYARAT

_

- 1. B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The Properties of Gases and Liquids, Fifth ed., McGraw-Hill International Editions, Singapore (2001).
- 2. J. M. Smith, H. C. Van Ness, M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 6th ed., McGwaw-Hill Co-Singapore (2001).3.
- 3. S. M. Walas, Phase Equibrilium in Chemical Engineering, Butterworth Publisher, USA (1985).
- 4. M. Modell and R. C. Reid, Thermodynamics and Its Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
- 5. S. I. Sandler, Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, Inc., New York, 1994.

	Nama Mata Kuliah	: SINTESA PROSES LANJUT
Mata Kuliah	Kode Mata Kuliah	: TK185102
TVILLE IXEILEI	Kredit	: 3 SKS
	Semester	: I

- Tujuan utama dari mata kuliah ini adalah untuk menyadarkan mahasiswa bahwa untuk membuat proses yang efisien menguntungkan sekaligus aman hendaknya berusaha menggunakan sumber alam (energi maupun material) seminimal mungkin. Diantara usaha tersebut adalah memperdalam lagi teori dan aplikasi integrasi panas yang diaplikasikan pada berbagai peralatan seperti reaktor, evaporator, distilasi dan alat pemisah lainnya.
- Sistem steam dan pendingin juga sangat mempengaruhi penggunaan sumber alam, oleh karena itu managemen steam dan pendingin termasuk sirkulasi air diperdalam. Penyebab dan pencegahan emisi zat pencemar ke lingkungan, demikian pula penyebab terjadinya kebakaran ledakan dan penyebaran bahan beracun dibahas untuk lebih menyadarkan kesehatan dan keselamatan kerja di lingkungan pabrik.
- Simulasi dengan software komersial seperti ASPEN PLUS, ASPEN HYSYS, GAMS dan MATLAB merupakan alat yang mudah untuk mengetahui efisiensi proses yang telah dirancang.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-5

Mampu mendesain dan melaksanakan eksperimen laboratorium dan atau lapangan dengan memanfaatkan metode, piranti teknik dan instrumen rekayasa

modern, serta menganalisis dan mengevaluasi hasilnya dalam menyelesaikan permasalahan keteknikkimiaan.

CPL-6

Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia

CPL-7

Menguasai prinsip dan metode keteknikkimiaan, energi, prinsip ekonomi dan proses ekologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia secara efektif dan optimal

CAPAIAN	PEMBELAJARAN MATA KULIAH
CPMK-1	Mahasiswa memahami pentingnya efisiensi enrgi dan sumber
	daya alam
CPMK-2	Mahasiswa memahami cara efisien penggunaan energi dalam
	jaringan penukar panas
CPMK-3	Mahasiswa memahami teori jejaring alat alat industri kimia dan
	aplikasinya.
CPMK-4	Mahasiswa memahami managemen penggunaan steam dan
	kogenerasi
CPMK-5	Mahasiswa memahami teori sistem pendinginan dan sirkulasi air
	serta aplikasinya
CPMK-6	Mahasiswa memahami sumber pencemaran udara dan cara
	pencegahannya
CPMK-7	Mahasiswa memahami pentingnya kesehatan dan keselamatan
	kerja
CPMK-8	Mensimulasikan proses kontinyu dengan ASPEN PLUS,
	ASPEN HYSYS dan MATLAB

POKOK BAHASAN

Jejaring alat penukar panas.

Identifikasi data aliran.

Aplikasi integrasi panas pada reaktor, kolom distilasi, evaporator dan alat pengering.

Sistem pembuatan uap air dan distibusinya. Sistem pendinginan dan refrigerasi.

Desain lingkungan untuk emisi zat pencemar ke udara.

Desain sistem air.

Aspek keamanan dan keselamatan kerja.

Teknologi Proses Bersih.

PRASYARAT

_

- 1. Robin Smith, "Chemical Process Design and Integration", John Wiley and Son, 2005
- 2. Warren D. Seider, Daniel R. Lewin, J.D. Seader, Soemantri Widagdo, Rafiqul Gani, Ka Ming Ng, "Product and Process Design Principles, 4th ed., John Wiley, Singapore, 2017.
- 3. R. Handogo et al," Evaluation of CO2 Transport Design via Pipeline in the CCS System with Various Distance Combinations", ECS Transactions, 107 (1) 8593, 2022.
- 4. A. Mualim et al.," Pinch-Based Approach Graphical Targeting for Multi-Period of Carbo Capture Storage and Utilization", Conf. On Broad Exposure to Science and Technology 2021 (BEST 2021), pp 8-15.
- 5. A. Mualim et al.," Evaluation of multiple time carbon capture and storage network with capital carbon trade-off", Journal of Cleaner Production", 291,125710, 2021.

	Nama Mata Kuliah	: MATEMATIKA TEKNIK KIMIA LANJUT
Mata Kuliah	Kode Mata Kuliah	: TK235102
	Kredit	: 4 SKS
	Semester	: I

 Tujuan utama dari mata kuliah ini adalah mengaplikasikan teori dasar dan teori teknik kimia untuk mengembangkan model matematik suaatu proses kimia yang berkaitan dengan perubahan baku menjadi produk

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri:

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

CPMK-1	Mahasiswa mampu mengaplikasikan teori dasar dan teori teknik	
	kimia untuk mengembangkan model matematik suaatu proses	
	kimia yang berkaitan dengan perubahan baku menjadi produk	
CPMK-2	Mahasiswa mampu mengaplikasikan metoda analitik pendekatan	
	untuk menyelesaikan PD biasa dan PD parsial yang diperoleh	
	dari permusan matematik proses fisika dan kimia	

CPMK-3 Mhasiswa mampu mengaplikasikan metoda numerik untuk menyelesaikan PD biasa dan PD parsial yang diperoleh dari permusan matematik proses fisika dan kimia
CPMK-4 Mahasiswa mampu merancang eksperimen dan mengolah data yang diperoleh dari eksperimen untuk persoalan penentuan persamaan empiris, semi empiris atau menentukan kondisi optimum suatu proses
CPMK-5 Mahasiswa mampu mengformulasi persoalan optimasi proses dan dan dapat menentukan kondisi optimum proses secara matematis untuk persoalan optimasi tak terkendala dan terkendala

POKOK BAHASAN

- 1. Mathematical Formulation of Chemical Engineering System
- 2. Approximate solution method of ODE and PDE: Perturbation and

Polynomial Approximation method

- 3. Numerical solution of ODE and PDE
- 4. Experimental Design
- 5. Mathematical Optimization Techniques

PRASYARAT

-

- 1. Rice, R.G. and Do, D.D., Applied Mathematics and Modeling for Chemical Engineers, John Wiley & Sons (1995).
- 2. Davis, M.E., Numerical Methods and Modeling for Chemical Engineers, John Wiley & Sons (1984).
- 3. Edgar, T.F. and Himmelblau, D.M., Optimization of Chemical Process, 2nd ed, Mc Graw Hill, New York (2001)
- 4. Linus Schrage, Optimization Modeling with Lingo, Lindo System Inc (1999)
- 5. G.E.P. Box, W.G.Hunter and J.S. Hunter, Statistics for Experimenters, Second Edition, John Wiley, 2005

Mata Kuliah	Nama Mata Kuliah	:	Transport Phenomena Lanjut
	Kode Mata Kuliah	:	TK235201
	Kredit	:	3 SKS
	Semester	:	II

Kuliah ini merupakan kuliah pada tingkat graduate yang dirancang untuk mereview persamaan momentum, energy dan massa yang berlaku didalam kontinum pada tingkat lanjut untuk mahasiswa yang telah memperoleh kuliah transport phenomena tingkat undergraduate. Konsep konsep dasar akan diuraikan melalui aplikasinya pada paradigma klasik dan praktis dalam transport phenomena. Mahasiswa akan mempelajari metoda metoda analitik dan pendekatan asimptotik untuk mempelajari dan menyelesaikan persoalan transport steady dan unsteady dengan dan tampa konveksi. Mahasiswa juga mempelajari teori lapisan batas untuk menyelesaikan persoalan transport disekitar permukaan batas. Metoda pembelajaran meliputi ceramah, class discussion, tugas rumah, tugas projek kelompok, dan ujian tulis (UTS dan UAS).

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri:

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN I	PEMBELAJARAN MATA KULIAH
CPMK-1	Mahasiswa mampu menjabarkan neraca property diferensial
	untuk property tertentu meliputi momentum, energy dan massa
	species dengan memperhitungkan secara tepat flux property
	secara konveksi dan diffuse (molecular) juga dengan meninjau
	generasi property
CPMK-2	Mahasiswa mampu menuliskan persamaan kontinuitas, navier
	stokes, persamaan energy dan persamaan kontinyuitas species
	dan menyederhanakannya secara tepat untuk persoalan transport
	tertentu. Mahasiswa mampu menuliskan kondisi batas yang
	berlaku untuk suatu persoalan transport tertentu dan mampu
	menyelesaikan dan secara fisik menginterpretasikan persoalan
	aliran fluida viskus satu dimensi steady state sistim isotermal
CPMK-3	Mahasiswa mampu malakukan scaling atau analisa dimensi dari
	persoalan transport menggunakan analisa untuk membantu
	penyederhanaan aratau meningkatkan pemahaman dari proses
GD) (III 4	perpindahan yang terjadi
CPMK-4	Mahasiswa mampu menyelesaikan dan secara fisik
	menginterpretasikan penyelesaian persoalan konduksi dan difusi
	spesies satu dimensi dan steady state dalam geometri rectangular,
	silinder dan bola dengan dan tampa generasi order satu atau order
	nol dan penyelesaian persoalan aliran fluida viskus isothermal
	dengan dua variable bebas (aliran dua dimensi steady state dan aliran satu dimensi unsteady state) menggunakan metoda
	•
	keserupaan, pemisahan variable, konsep stream function (creeping flow)
CPMK-5	Mahasiswa mampu menyelesaikan dan menginterpretasikan
CI WIK-5	penyelesaian persoalan aliran inviscid (potential flow) dua
	dimensi steady state dan penyelesaian persoalan aliran fluida dua
	dimensi steady state menggunakan teori lapisan batas
CPMK-6	Mahasiswa mampu mengunakan metoda pemisahan variable
	untuk menyelesaikan dan menginterpretasikan penyelesaian
	secara fisik dari persoalan konduksi dan difusi dua dimensi.
	Mahasiswa mampu mengunakan metoda keserupaan dan
	menginterpretasikan secara fisik penyelesaian persoalan konduksi
	dan difusi unsteady state dalam unbounded region (region
	terbuka)
CPMK-7	Mahasiswa mampu menggunakan metoda finite Fourier
	Transform untuk menyelesaikan dan menginterpretasikan
	penyelesaian persoalan konduksi dan difusi unsteady state dalam
	region tertutup. Mahasiswa mampu menyelesaiakan dan

menginterpretasikan secara fisik penyelesaian persoalan konveksi dan difusi (konduksi) secara bersamaan meliputi interaksi lapisan batas termal maupun konsentrasi dengan membentuk profil kecepatan atau dengan profil kecepatan yang sudah ada

CPMK-8 Mahasiswa mampu menyelesaikan dan menginterpretasikan penyelesaian persoalan perpindahan massa multi komponen menggunakan persamaan Stefan-Maxwell

POKOK BAHASAN

- 1. Konsep Dasar (Shell Balance, Persamaan Perubahan)
- 2. Persoalan Aliran Fluida Isotermal Satu Dimensi Unsteady State
- 3. Persoalan Konduksi dan Difusi Satu Dimensi Steady State
- 4. Persoalan Aliran Fluida Satu Dimensi Unsteady State (Region tertutup dan terbuka)
- 5. Persoalan Aliran Fluida Dua Dimensi Steady State (Creeping flow, potential flow, teori lapisan batas laminar)
- 6. Persoalan Konduksi dan Difusi Dua Dimensi
- 7. Persoalan Konduksi dan Difusi dengan Konveksi Dua Dimensi (Pendekatan Asymtotik)
- 8. Persoalan Perpindahan Massa Multi komponen

PRASYARAT

Pengetahuan Dasar Mekanika Fluida, transfer panas dan massa, analisa vector, dan persamaan diferensial

- 1. R.Byron Bird, Waren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, second edition, Wiley (2002)
- 2. L. Gary Leal, Advanced Transport Phenomena, Cambridge University Press (2010)
- 3. Ali Altway, Sugeng Winardi, Heru Seyawan, Proses Perpindahan, ITS Press, Surabaya, 2012
- 4. William M. Deen, Analysis of Transport Phenomena, Oxford University Press (2012).
- 5. Truskey, Yuan and Katz, Transport Phenomena in Biological Systems, Pearson Prentice Hall (2009).

	Nama Mata Kuliah	:	TEKNIK REAKSI KIMIALANJUT
Mata Kuliah	Kode Mata Kuliah	:	TK185202
	Kredit	:	4 SKS
	Semester	:	II

 Mata kuliah yang membahas terkait penerapan konsep sainsrekayasa (engineering sciences), reaksi Non-Isothermal, desain reaktor system Isothermal/Non-Isothermal, Internal Transport, Diffusi dan Kinetik, Reaktor Katalitik,

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-3

Mampu mengelola pembelajaran diri sendiri, dan mengembangkan diri sebagai pribadi pembelajar sepanjang hayat untuk bersaing di tingkat nasional, maupun internasional, dalam rangka berkontribusi nyata untuk menyelesaikan masalah dengan mengimplementasikan teknologi informasi dan komunikasi dan memperhatikan prinsip keberlanjutan serta memahami kewirausahaan berbasis teknologi.

CPL-4

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-7

Menguasai prinsip dan metode keteknikkimiaan, energi, prinsip ekonomi dan proses ekologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia secara efektif dan optimal

CAPAIAN PEMBELAJARAN MATA KULIAH

CPMK-1 Mengetahui operasi Non-isothermal pada Reaktor

CPMK-2	Mengimplementasikan prinsip stabilitas reaktor mixed flow
	pada perancangan reaktor
CPMK-3	Menjelaskan teknik dasar desain reaktor system isothermal
	dan non-isotermal
CPMK-4	Menjelaskan konsep difusi dan reaksi
CPMK-5	Menelaah rejim kinetic/mass transfer di katalis padat
CPMK-6	Merancang desain reaktor dengan evaluasi transfer panas
CPMK-7	Menerapkan konsep keteknikikimiaan dalam rekayasa
	katalis dan reaksi katalitik heterogen
CPMK-8	Menerapkan dasar-dasar desain reaktor pada sistem reaktor
	hiokimia

POKOK BAHASAN

- 1. Reaksi Non-Isothermal
- 2. Desain Reaktor system Isothermal/Non-Isothermal
- 3. Internal Transport, Diffusi dan reaksi
- 4. Reaktor Katalitik
- 5. Sistem Reaktor Biokimia dengan enzim dan sel hidup

PRASYARAT

_

- 1. Fogler," Elements of Chemical Reaction Engineering", 3rd Ed, Prentice-Hall, 1999
- 2. J.M.Smith, "Reaction Kinetics" 3rd ed, McGraw-Hill,1982
- 3. Octave Levenspiel, "Chemical Reaction Engineering" 3rd Ed. McGraw-Hill, 2000.

Mata Kuliah	Nama Mata Kuliah	: TEKNOLOGI PARTIKEL
	Kode Mata Kuliah	: TK235104
	Kredit	: 3 SKS
	Semester	: X

Matakuliah ini mempelajari dasar-dasar dan aplikasi teknologi partikel pada bidang-bidang/industri yang memerlukan pengetahuan untuk proses dan penanganan partikel dan powder.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-5

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mendesain dan melaksanakan eksperimen laboratorium dan atau lapangan dengan memanfaatkan metode, piranti teknik dan instrumen rekayasa modern, serta menganalisis dan mengevaluasi hasilnya dalam menyelesaikan permasalahan keteknikkimiaan.

CPL-6

CPL dalam aspek Pengetahuan didefinisikan oleh Prodi (jumlah lebih dari 1)

Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia

CAPAIAN PEMBELAJARAN MATA KULIAH

CPMK-1 Mahasiswa menejelaskan karakterisasi artikel (C2)

CPMK-2 Mahasiswa menjelaskan pemrosesan partikel (pencampuran

- dan segregasi, granulasi, deposisi) (C2)
- CPMK-3 Mahasiswa menjelaskan Pembentukan partikel (pengecilan dan pembesaran ukuran, granulasi) (C2)
- CPMK-4 Mahasiswa menjelaskan Transportasi partikel (aliran multifasa, perpindahan pneumatik, unggun terfluidiasi) (C2)
- CPMK-5 Mahasiswa menjelaskan Pemisahan fluida-partikel (filtrasi, pengendapan, siklon) (C2)
- CPMK-6 Mahasiswa menganalisa keamanan pada ledakan debu (C4)

POKOK BAHASAN

- 1. Karakterisasi Partikel
- Pemrosesan partikel (pencampuran dan segregasi, granulasi, deposisi)
- 3. Pembentukan partikel (pengecilan dan pembesaran ukuran, granulasi)
- 4. Transportasi partikel (aliran multifasa, perpindahan pneumatik, unggun terfluidiasi)
- 5. Pemisahan fluida-partikel (filtrasi, pengendapan, siklon)
- 6. Keamanan (ledakan debu)

PRASYARAT

_

- 1. Rhodes, M., "Introduction to Particle Technology", 2nd edition, John Wiley & Sons, Ltd., 2008.
- 2. Masuda, H., Higashitani, K., and Yoshida, H., "Powder Technology Handbook", 3rd edition, Taylor & Francis Grup, LLC., 2006.

Mata Kuliah	Nama Mata Kuliah	: ANALISIS SISTEM TERMAL
	Kode Mata Kuliah	: TK235105
	Kredit	: 3 SKS
	Semester	: 2

 Mata Kuliah ini merupakan mata kuliah pada tingkat magister untuk menyelesaikan masalah energy dan exergy. Mahasiswa akan diperkenalkan dengan teori dasar exergy.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri;

CPL-5

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

CPL dalam aspek Pengetahuan didefinisikan oleh Prodi (jumlah lebih dari 1) Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

CPMK-1 Mahasiswa mampu menjelaskan pengembangan metoda

	exergy sebagai alat analisis energi
CPMK-2	Mahasiswa mampu menjelaskan contoh keuntungan yang diperoleh dengan metoda exergy.
CPMK-3	Mahasiswa mampu menjelaskan contoh aplikasi metode exergy pada sistem individu teknik kimia.
CPMK-4	Mahasiswa mampu menjelaskan metoda blok dari analisa exergy
CPMK-5	Mahasiswa mampu mengimplementasi analisa exergy untuk sistem kompleks
СРМК-6	Mahasiswa mampu mengaitkan analisa exergy untuk proses sederhana
СРМК-7	Mahasiswa mampu menjelaskan contoh analisis plant termal dan kimia
CPMK-8	Mahasiswa mampu menjelaskan aplikasi termoekonomik

POKOK BAHASAN

- 1. Konsep dan rumusan energy dan exergy.
- 2. Pengembangan metoda exergy sebagai alat analisis energi
- 3. Contoh keuntungan yang diperoleh dengan metoda exergy.
- 4. Contoh aplikasi metode exergy pada sistem individu teknik kimia.
- 5. Metoda blok dari analisa exergy
- 6. Aplikasi analisa exergy untuk sistem kompleks
- 7. Analisa exergy untuk proses sederhana
- 8. Contoh analisis plant termal dan kimia
- 9. Aplikasi termoekonomik

PRASYARAT

- 1. Michael J. Moran, Howard N. Sapiro, "Fundamentals of Engineering Thermodynamics", 5th edition, John Wiley & Sons, New York, 2006
- 2. T.J. Kotas, "The Exergy Method of Thermal Plant Analysis, 2nd edition, Krieger Publishing Company, New York, 1995.

Mata Kuliah	Nama Mata Kuliah	: REAKTOR BIOKIMIA
	Kode Mata Kuliah	: TK235203
	Kredit	: 3 SKS
	Semester	: X

 Mata kuliah ini mempelajari aplikasi bioteknologi dalam industri pangan: Pengantar Bioteknologi Pangan, Perkembangan Bioteknologi di Bidang Karbohidrat, Perkembangan Bioteknologi di Bidang Protein dan Enzim, Perkembangan Bioteknologi di Bidang Lipid, Aplikasi Mikrobiologi Molekular Pada Proses Pangan, Desain Bioreaktor Proses Pangan, Perkembangan Teknologi Terkini dibidang Bioteknologi Pangan

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-6

Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia

CPL-7

Menguasai prinsip dan metode keteknikkimiaan, energi, prinsip ekonomi dan proses ekologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia secara efektif dan optimal

CAPAIAN PEMBELAJARAN MATA KULIAH

- CPMK-1 Perkembangan Bioteknologi di Bidang Karbohidrat
- CPMK-2 Perkembangan Bioteknologi di Bidang Protein dan Enzim
- CPMK-3 Perkembangan Bioteknologi di Bidang Lipid
- CPMK-4 Desain Bioreaktor Proses Pangan
- CPMK-5 Perkembangan Teknologi Terkini dibidang Bioteknologi

Pangan

POKOK BAHASAN

- 1. Pengantar Bioteknologi Pangan
- 2. Perkembangan Bioteknologi di Bidang Karbohidrat
- 3. Perkembangan Bioteknologi di Bidang Protein dan Enzim
- 4. Perkembangan Bioteknologi di Bidang Lipid
- 5. Aplikasi Mikrobiologi Molekular Pada Proses Pangan
- 6. Desain Bioreaktor Proses Pangan

Perkembangan Teknologi Terkini dibidang Bioteknologi Pangan

PRASYARAT

- Food Science and Food Biotechnology, edited by Gustavo F. Gutiérrez-López and Gustavo V. Barbosa-Cánovas, CRC PRESS, 2003
- 2. Food Biotechnology, 2 ed, edited by Kalidas Shetty, Gopinadhan Paliyath, Anthony Pometto, Robert E. Levin, CRC PRESS, 2006
- 3. James M. Lee: Biochemical Engineering, Prentice Hall International series, 1992
- Octave Levenspiel, "Chemical Reaction Engineering" 3rd Ed. McGraw-Hill, 2000

Mata Kuliah	Nama Mata Kuliah	: KOMPUTASI DINAMIKA FLUIDA
	Kode Mata Kuliah	: TK235205
	Kredit	: 3 SKS
	Semester	: X

 Mata kuliah ini menjelaskan dan mempraktikkan dasar-dasar keterampilan untuk mendemonstrasikan keahlian di bidang simulasi proses khususnya alat indutri kimia berbasis CFD dan menyajikan hasil simulasi yang bermakna.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-5

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mendesain dan melaksanakan eksperimen laboratorium dan atau lapangan dengan memanfaatkan metode, piranti teknik dan instrumen rekayasa modern, serta menganalisis dan mengevaluasi hasilnya dalam menyelesaikan permasalahan keteknikkimiaan.

CPL-6

CPL dalam aspek Pengetahuan didefinisikan oleh Prodi (jumlah lebih dari 1) Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani

masalah tel	masalah teknik kimia		
CAPAIAN	PEMBELAJARAN MATA KULIAH		
CPMK-1	Mahasiswa mampu menjelaskan definisi Computational Fluid		
	Dynamic (CFD)		
CPMK-2	Mahasiswa mampu mengimplementasikan persamaaan -		
	persamaan umum pada metode CFD		
CPMK-3	Mahasiswa mampu menjelaskan Tiga tahap CFD (pre-		
	processor, solver, dan post-processor)		
CPMK-4	Mahasiswa mampu mendemonstrasikan simulasi aliran fluida		
CPMK-5	Mahasiswa mampu mendemonstrasikan simulasi proses		
	pemisahan		
CPMK-6	Mahasiswa mampu mendemonstrasikan simulasi proses		
	pembakaran homogen		

mendemonstrasikan simulasi

POKOK BAHASAN

CPMK-7

- 1. Definisi CFD
- 2. Persamaan persamaan umum pada metode CFD
- 3. Tiga tahap CFD (pre-processor, solver, dan post-processor)
- 4. Simulasi aliran fluida
- 5. Simulasi proses pemisahan
- 6. Simulasi proses pembakaran homogen

Mahasiswa mampu

pembakaran heterogen

7. Simulasi proses pembakaran heterogen

PRASYARAT

_

PUSTAKA

- 1. Versteeg, H.K., Malalasekera, W. (2007). *An Introduction to Computational Fluid Dynamics* (2 ed.). Pearson, Prentice Hall.
- 2. Fluent User's Guide.
- 3. Jurnal ilmiah terkait

Mata Kuliah	Nama Mata Kuliah	: TEKNOLOGI MEMBRAN
	Kode Mata Kuliah	: TK235301
	Kredit	: 3 SKS
	Semester	: X

DESKRIPSI MATA KULIAH

proses

Mata Kuliah ini mempelajari pengenalan dan pemilihan material membran, proses pembuatan dan karakterisasi membran, fenomena perpindahan khususnya massa pada membran serta aplikasi membran dalam industri. Dengan metode pembelajaran meliputi ceramah, diskusi, studi kasus, pembelajaran berbasis masalah, ujian Tulis, (meliputi kuis, tugas dan EAS)

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri:

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

- CPMK-1 Mahasiswa mampu menjelaskan dasar pemilihan material membran (C2)
- CPMK-2 Mahasiswa mampu menguraikan proses pembuatan dan cara karakterisasi membran (C4)
- CPMK-3 Mahasiswa mampu mengimplementasikan teori fenomena perpindahan pada proses pemisahan membran (C3)
- CPMK-4 Mahasiswa mampu menampilakni aplikasi membran di dalam industri (C2)

POKOK BAHASAN

- 1. Pengenalan dan pemilihan propertis material membran
- 2. Proses pembuatan membrane
- 3. Karakterisasi membrane
- 4. Fenomena perpindahan pada membrane
- 5. Aplikasi membran

PRASYARAT

_

- Kucera, J., "Reverse Osmosis: Industrial Applications and Processes", Wiley VCH, 2010
- 2. Mulder, M., "Basic Principles of Membrane Technology", 2nd edition,

- Kluwer Academic Publishers, 1996
- 3. M.C. Porter (ed), "Handbook of Industrial Membrane Technology", Noyes Publication, New York, 1990.
- 4. Geankoplis, S.J , "Transport Process and Unit Operation", 3nd edition. 1993.
- 5. Drioli, E. and Giorno, L., "Membrane Operations: Innovative Separations and Transformations", Wiley VCH, 2009

	Nama Mata Kuliah	:	Pengolahan dan Pemanfaatan Batubara
Mata Kuliah	Kode Mata Kuliah	:	TK235302
	Kredit	:	3 SKS
	Semester	:	X

Mata kuliah ini menjelaskan tentang penyiapan batubara untuk digunakan sebagai bahan bakar langsung maupun dikonversi menjadi bahan lainnya meliputi proses pembentukan, penambangan, persiapan dan pengolahan serta transportasi batubara, Analisa batubara, Batubara untuk listrik: steam turbine/pulverized coal combustion, integrated gasification combined cycle, dan fluidized bed combustion, Batubara untuk bahan bakar cair, serta Pemanfaatn produk samping pengolahan batubara.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

CP MK-1 Mahasiswa mampu menjelaskan proses persiapan batubara

- yang akan digunakan sebagai bahan bakar langsung maupun yang akan dikonversi menjadi bahan lainnya
- CP MK-2 Mahasiswa mampu memanfaatkan dan menganalisa batubara untuk mengetahui kualitas batubara
- CP MK-3 Mahasiswa mampu menganalisa dan mengevaluasi prosesproses pengolahan dan pemanfaatan batubara untuk listrik, bahan bakar cair, dan bahan kimia lainnya
- CP MK-4 Mahasiswa mampu mengembangkan proses/teknologi untuk mengurangi efek negative pada pengolahan dan pemanfaatan batubara

POKOK BAHASAN

- 1. Penyiapan batubara untuk digunakan sebagai bahan bakar langsung maupun dikonversi menjadi bahan lainnya meliputi proses pembentukan, penambangan, persiapan dan pengolahan serta transportasi batubara.
- 2. Analisa batubara
- Batubara untuk listrik: steam turbine/pulverized coal combustion, integrated gasification combined cycle, dan fluidized bed combustion.
- 4. Batubara untuk bahan bakar cair
- 5. Pemanfaatn produk samping pengolahan batubara

PRASYARAT

-

- 1. The Coal Handbook Volume 2: Towards Cleaner Coal Utilization 2nd Edition March 15, 2023
- Handbook of Coal Analysis, Wiley-Interscience; 1st edition (April 27, 2005

Mata Kuliah	Nama Mata Kuliah	: TEKNIK REAKSI ELEKTROKIMIA	
	Kode Mata Kuliah	: TK235303	
	Kredit	: 3 SKS	
	Semester	: X	

Mata kuliah ini membahas tentang teknik elektrokimia dengan cakupan dari fundamental yang meliputi termodinamika, kinetika dan perpindahan dan aplikasinya. Materi yang juga dibahas dalam fundamental meliputi struktur elektroda dan salah satu teknik elektronalitika. Aplikasi yang akan dibahas bisa dipilih ari beberapa topik antara lain baterai, sel bahan bakar, kapasitor lapisan ganda, sistem penyimpanan energi untuk kendaraan, elektrodeposisi, alaktrolisa industri, elektroda semikonduktor, dan korosi.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri.

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah.

CAPAIAN PEMBELAJARAN MATA KULIAH					
CPMK-1	Mahasiswa menguasai fundamental dari sistem elektrokimia				
CPMK-2	Mahasiswa mampu mengintegrasikan aplikasi kunci teknik				
	elektrokimia dengan fundamental yang yang relevan.				
CPMK-3	Mahasiswa memahami struktur elektroda dan teknik				
	elektroanalitika dan mampu memilih sistem elektrokimia yang				
	sesuai untuk aplikasi tertentu				
CPMK-4	Mahasiswa memahami aplikasi sistem elektrokimia di industri				
	dan mampu mengenal karakteristik kunci beberapa diantaranya				
	(misal: baterai dan aplikasi industri elektrolisa).				

POKOK BAHASAN

Sel elektrokimia dan karakteristik reaksi kimianya; potensial sel dan termodinamika; kinetika elektrokimia; transport; struktur elektroda dan konfigurasi; teknik elektroanalitika dan analisa sistem elektrokimia; aplikasi teknik elektrokimia.

PRASYARAT

_

- 1. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods, Fundamentals and Applications", 2nd edition, John Wiley & Sons, Inc., 2001
- 2. Perez, N., "Electrochemistry and Corrosion Science", Kluwer Academic Publishers, 2004
- 3. Goodridge, F. and Scott, K., "Electrochemical Process Engineering", Plenum Press, New York, 1995

Mata Kuliah	Nama Mata Kuliah	: TEKNOLOGI AEROSOL
	Kode Mata Kuliah	: TK235305
	Kredit	: 3 SKS
	Semester	: 3

 Mata Kuliah ini mempelajari sifat dan karakterisasi aerosol, instrumen alat ukur pada aerosol, particle motion dari aerosol, atmospheric aerosol, adhesion of particles, metode fabrikasi aerosol, serta aplikasi aerosol pada proses industri dan aplikasi aerosol di berbagai bidang lainnya.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri.

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah.

CAPAIAN PEMBELAJARAN MATA KULIAH

1. CPMK-1 Mahasiswa memahami sifat dan karakterisasi aerosol

CPMK-2 Mahasiswa memahami pergerakan partikel
 CPMK-3 Mahasiswa memahami aplikasi aerosol di tingkat industri

POKOK BAHASAN

- 1. Definisi dan karakterisasi aerosol
- 2. Instrumen alat ukur aerosol
- 3. Penyebaran aerosol di atmosfer
- 4. Metode fabrikasi aerosol
- 5. Aerosol pada proses industry

PRASYARAT

-

- 1. Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2nd ed. (1999).
- 2. Artikel terbaru yang relevan dan sudah di publikasikan pada jurnal inetrnational yang bereputasi

Mata Kuliah	Nama Mata Kuliah	: PEMROSESAN GASALAM
	Kode Mata Kuliah	: TK235306
	Kredit	: 3 SKS
	Semester	: 3

• Mata Kuliah ini mempelajari peran penting perilaku fasa dalam pemrosesan gas alam; mempelajari properties penting yang digunakan untuk mengkarakterisasi gas alam dan kondensat.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri.

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah.

CAPAIAN PEMBELAJARAN MATA KULIAH

- CPMK-1 Mahasiswa memamhami pemanfaatan gas alam
- CPMK-2 Mahasiswa memahami termodinamika gas alam
- CPMK-3 Mahasiswa memamhami desain dasar proses gas alam
- CPMK-4 Mahasiswa memmahami produksi gas alam

POKOK BAHASAN

- 1. Cadangan dan pemanfaatan gas alam
- 2. Properti termodinamika gas alam

- 3. Teknologi dan basic design pemrosesan gas alam
- 4. Produk dan spesifikasi gas alam
- 5. Sistem transmisi gas alam

PRASYARAT

-

- Gas Processors Suppliers Association, Engineering Data Book, 12th Ed., 2004.
- 2. Kidnay, Athur J. and Parrish, William R., Fundamental of Natural Gas processing, CRC Press, 2006.
- 3. Campbell, John Morgan, Gas conditioning and processing (Campbell Petroleum Series), 3rd Ed., Campbell Petroleum; 1974.
- 4. Mokhatab, Saeid; Poe, William; Mak, John, Handbook of Natural Gas Transmission and Processing, 3rd Ed., Gulf Professional Publishing, 2015.
- 5. Poling, Bruce E.; Prausnitz, John M.; O' Connell, John, The Properties of Gases and liquids, 5th Ed., McGraw-Hill Education, 2001.

Mata Kuliah	Nama Mata Kuliah	:	Teknologi Polimer
	Kode Mata Kuliah	:	TK235308
	Kredit	:	3 SKS
	Semester	:	X

Mempelajari dasar-dasar polimer, hubungan antara sifat dengan struktur dan perilaku prosesnya.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-5

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mendesain dan melaksanakan eksperimen laboratorium dan atau lapangan dengan memanfaatkan metode, piranti teknik dan instrumen rekayasa modern, serta menganalisis dan mengevaluasi hasilnya dalam menyelesaikan permasalahan keteknikkimiaan.

CPL-6

CPL dalam aspek Pengetahuan didefinisikan oleh Prodi (jumlah lebih dari 1) Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia

CAPAIAN	PEMBELAJARAN MATA KULIAH
CPMK-1	Mahasiswa mampu menjelaskan Konsep polimer, klasifikasi,
	struktur, dan pemrosesannya; dasar-dasar dan kinetika polimerisasi
CPMK-2	Mahasiswa mampu menjelaskan Kopolimerisasi dan teknik
	polimerisasi; contoh-contoh dan pembahasan industri polimer
	komersial
CPMK-3	Mahasiswa mampu menghitung dan memprediksi sifat-sifat
	thermal (Cp, k, r) suatu polimer

- CPMK-4 Mahasiswa mampu mengimplementasikan konsep PVT, estimasi dan data PVT, kelarutan polimer, pemrosesan polimer dan jenisjenisnya
- CPMK-5 Mahasiswa mampu mengimplementasikan konsep Tg, Tm dan karakterisasinya dalam pemerosesan polimer
- CPMK-6 Mahasiswa mampu menelaah sifat polimer dari segi berat molekul, DSC, SEM, TEM, FTIR dan lain-lain

POKOK BAHASAN

Konsep polimer, klasifikasi, struktur, dan pemrosesannya; dasar-dasar dan kinetika polimerisasi. Kopolimerisasi dan teknik polimerisasi; contoh-contoh dan pembahasan industri polimer komersial; sifat-sifat thermal (Cp, k, r), dan prediksinya, konsep PVT, estimasi dan data PVT, kelarutan polimer, pemrosesan polimer dan jenis-jenisnya; konsep Tg, Tm dan karakterisasinya. Packaging dan recycle. Karaktersasi polimer; berat molekul, DSC, SEM, TEM, FTIR dan lain-lain.

PRASYARAT

- 1. Jean-François Agassant, Pierre Avenas, Bruno Vergnes, Michel Vincent and Pierre Carreau. "Polymer Processing. Principles and Modelling". Carl Hanser Verlag, Munich., Year: 2016
- Billmeyer. F.W. Jr., "Textbook of Polymer Science". Wilcy, New York, 1971.
- 3. Griskey, R.G. "Polymer Process Engineering ", Chapman & Hall, New York, 1995.
- 4. Fried, J.R., "Polymer Science and Technology", Prentice Hall, New Jersey, 1995.

	Nama Mata Kuliah	:	Metodologi Penelitian
Mata Kuliah	Kode Mata Kuliah	:	TK235309
	Kredit	:	3 SKS
	Semester	:	X

Mata kuliah ini menjelaskan mengenai dasar-dasar teknologi katalis heterogen, meliputi: metode preparasi, teknik karakterisasi, teknik finsihing produksi serta deaktivasi katalis

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri.

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi.

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah.

CAPAIAN PI	EMBELAJARAN MATA KULIAH
CPMK-1	Mampu menjelaskan dasar – dasar penelitian (C2)
CPMK-2	Mampu menjelaskan tahapan – tahapan penelitian (C2)
CPMK-3	Mampu melakukan literature review (C3)
CPMK-4	Mamapu melakukan pengumpulan data dan analisisnya (C3)
CPMK-5	Mampu membuat proposal dokumen penelitian (C6)
POKOK BAH	HASAN

- Dasar dan tahapan penelitian
- Literature review
- Pengumpulan dan analisis data
- Proposal penelitian

PRASYARAT

_

- 1. Pedoman Penulisan Tesis Pascasarjana ITS
- 2. Catherine Dawson, 2006, A Practical Guide to Research Methods: A User-Friendly Manual for Mastering Research Techniques and Projects, How To Books Ltd., UK.
- 3. Uwe Flick, 2013, Introduction Research Methodology: A Beginner's Guide to Doing a Research Project, SAGE Publication
- 4. John W. Creswell, 2014, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, fourth ed., Sage Publication Inc., USA.

	Nama Mata Kuliah	:	Pengendalian Multi Variabel Lanjut
Mata Kuliah	Kode Mata Kuliah	:	TK235310
	Kredit	:	3 SKS
	Semester	:	X

Mata kuliah ini merupakan mata kuliah pada tingkat magister untuk menyelesaikan masalah pengendalian yang banyak diaplikasikan dalam industry kimia dan migas. Review pengendalian feedback konvensional. Mahasiswa akan diperkenalkan dengan pengendalian multi variabel. Pengenalan teori sistem linier. Limitasi pada kinerja sistem SISO dan MIMO. Limitasi yang disebabkan oleh time delay dan RHP-poles dan zeros. Limitasi yang disebabkan oleh konstrain input, sudut fasa dan ketidakpastian. Analisis kinerja dan stabilitas robust. Perancangan sistem pengendalian . Perancangan struktur pengendalian. Reduksi model. Metoda pembelajaran terdiri dari tugas-tugas individu dan kelompok, kuis tengah semester dan ujian akhir semester.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-4

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mengidentifikasi dan merumuskan masalah teknik, melakukan studi untuk mendesain suatu sistem atau proses untuk menyelesaikan masalah berdasarkan prinsip teknik kimia (perubahan bahan baku menjadi produk yang mempunyai nilai tambah melalui proses fisika, kimia dan biologi secara aman dalam segi hukum, ekonomi, lingkungan, sosial, politik, kesehatan dan keselamatan, keberlanjutan) serta untuk mengenali dan/atau memanfaatkan potensi sumber daya lokal dan nasional dengan wawasan global.

CPL-5

CPL dalam aspek KK didefinisikan oleh Prodi (jumlah lebih dari 1)

Mampu mendesain dan melaksanakan eksperimen laboratorium dan atau lapangan dengan memanfaatkan metode, piranti teknik dan instrumen rekayasa modern, serta menganalisis dan mengevaluasi hasilnya dalam menyelesaikan permasalahan keteknikkimiaan.

CPL-6

CPL dalam aspek Pengetahuan didefinisikan oleh Prodi (jumlah lebih dari

1)

Menguasai prinsip - prinsip matematika, fisika, kimia, dan biologi untuk dapat berperan sebagai tenaga ahli (sub professional) yang menangani masalah teknik kimia

CAPAIAN PEMBELAJARAN MATA KULIAH

CPMK-1	Mahasiswa	menjelaskan	sistem	pengendalian	dan	limitasi
kinerja sistem SISO dan MIMO. (C2)						

- CPMK-2 Mahasiswa menjelaskan limitasi yang disebabkan oleh time delay, RHP-poles dan zeros. (C2)
- CPMK-3 Mahasiswa menjelaskan stabilitas robust dan kinerja sistem pengendalian. (C2)
- CPMK-4 Mahasiswa merancang sistem pengendalian dan struktur pengendalian. (C6)
- CPMK-5 Mahasiswa mampu menhitung fungsi transfer matriks sistem MIMO dan mampu mengendalikan proses MIMO. (C3)
- CPMK-6 Mahasiswa menjelaskan robust dan stabilitas proses MIMO. (C2)
- CPMK-7 Mahasiswa mampu melakukan analisis kontrolabilitas, analisis kinerja dan stabilitas robust. (C3)
- CPMK-8 Mahasiswa mampu merancang sistem dan struktur pengendalian MIMO (C6). Mahasiswa mampu melakukan reduksi model. (C3)

POKOK BAHASAN

- 1. Review Sistem Pengendalian Feedback Konvensional.
- 2. Pengenalan Pengendalian Multivariabel.
- 3. Elemen teori sistem linier.
- 4. Limitasi pada kinerja dalam sistem SISO
- 5. Limitasi pada kinerja dalam sistem MIMO
- 6. SISO dan MIMO Stabilitas dan Kineria Robust
- 7. Perancangan Sistem Pengendalian dan Struktur Pengendalian.
- 8. Reduksi Model

PRASYARAT

_

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J. Doyle III, "Process Dynamics and Control", 4thed., John Wiley & Sons, New. York., 2016.
- 2. Sigurd Skogestad, Ian Postlethwaite," Multivariable Feedback Control", 2nd edition, John Wiley & Sons, New York, 2005.

Mata Kuliah	Nama Mata Kuliah	:	Tesis I
	Kode Mata Kuliah	:	TK235206
	Kredit	:	4 SKS
	Semester	:	II

Mata kuliah ini berisi kegiatan pelaksanaan penelitian, terdiri dari: melaksanakan studi eksperimen/simulasi awal, melaporkan kemajuan penelitian, mengolah data penelitian, mendiskusikan hasil penelitian, serta membuat laporan proposal dan ujian presentasi proposal.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-1

Mampu menunjukkan sikap dan karakter yang mencerminkan: ketakwaan kepada Tuhan Yang Maha Esa, etika dan integritas, berbudi pekerti luhur, peka dan peduli terhadap masalah sosial dan lingkungan, menghargai perbedaan budaya dan kemajemukan, menjunjung tinggi penegakan hukum, mendahulukan kepentingan bangsa dan masyarakat luas, melalui kreatifitas dan inovasi, ekselensi, kepemimpinan yang kuat, sinergi, dan potensi lain yang dimiliki untuk mencapai hasil yang maksimal.

CPL-2

Mampu mengembangkan dan memecahkan permasalahan ilmu pengetahuan dan teknologi dalam bidang keilmuan nya melalui riset dengan pendekatan inter atau multidisiplin hingga menghasilkan karya inovatif dan teruji dalam bentuk tesis dan makalah yang telah diterima di jurnal ilmiah nasional terakreditasi atau diterima di seminar internasional bereputasi

CPL-3

Mampu mengelola pembelajaran diri sendiri, dan mengembangkan diri sebagai pribadi pembelajar sepanjang hayat untuk bersaing di tingkat nasional, maupun internasional, dalam rangka berkontribusi nyata untuk menyelesaikan masalah dengan mengimplementasikan teknologi informasi dan komunikasi dan memperhatikan prinsip keberlanjutan.

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

- CPMK-1 Mahasiswa menguasai teori, sains dan rekayasa beserta aplikasi dengan aspek teknik, ekonimi dan sosial
- CPMK-2 Mahasiswa mampu memecahkan permasalahan rekayasa dan teknologi dan merancang proses
- CPMK-3 Mahasiswa mampu memformulasikan gagasan baru dari hasil riset yang dilaksanakan
- CPMK-4 Mahasiswa mampu mengembangkan pemikiran logis, kritis, sistematis, dan kreatif melalui penelitian ilmiah, penciptaan desain atau karya seni dalam bidang ilmu pengetahuan dan teknologi dan menulisakn dalam laporan ilmiah dan laporan tesis

POKOK BAHASAN

- 1. Latar belakang
- 2. Maksud dan tujuan
- 3. Tinjauan pustaka
- 4. Metodologi
- 5. Hasil dan pembahasan
- 6. Kesimpulan penelitian

PRASYARAT

-

- Buku Panduan Baku Mutu Program Pascasarjana ITS Pedoman Penulisan Tesis Pascasarjana ITS

Mata Kuliah	Nama Mata Kuliah	:	Tesis II
	Kode Mata Kuliah	:	TK 235313
	Kredit	:	6 SKS
	Semester	:	III

Mata kuliah ini berisi kegiatan pelaksanaan penelitian, terdiri dari: melaksanakan studi eksperimen/simulasi awal, melaporkan kemajuan penelitian, mengolah data penelitian, mendiskusikan hasil penelitian, serta membuat laporan proposal dan ujian presentasi proposal.

CAPAIAN PEMBELAJARAN LULUSAN YANG DIBEBANKAN MATA KULIAH

CPL-1

Mampu menunjukkan sikap dan karakter yang mencerminkan: ketakwaan kepada Tuhan Yang Maha Esa, etika dan integritas, berbudi pekerti luhur, peka dan peduli terhadap masalah sosial dan lingkungan, menghargai perbedaan budaya dan kemajemukan, menjunjung tinggi penegakan hukum, mendahulukan kepentingan bangsa dan masyarakat luas, melalui kreatifitas dan inovasi, ekselensi, kepemimpinan yang kuat, sinergi, dan potensi lain yang dimiliki untuk mencapai hasil yang maksimal.

CPL-2

Mampu mengembangkan dan memecahkan permasalahan ilmu pengetahuan dan teknologi dalam bidang keilmuan nya melalui riset dengan pendekatan inter atau multidisiplin hingga menghasilkan karya inovatif dan teruji dalam bentuk tesis dan makalah yang telah diterima di jurnal ilmiah nasional terakreditasi atau diterima di seminar internasional bereputasi

CPL-3

Mampu mengelola pembelajaran diri sendiri, dan mengembangkan diri sebagai pribadi pembelajar sepanjang hayat untuk bersaing di tingkat nasional, maupun internasional, dalam rangka berkontribusi nyata untuk menyelesaikan masalah dengan mengimplementasikan teknologi informasi dan komunikasi dan memperhatikan prinsip keberlanjutan.

CPL-4

Mampu melakukan pendalaman atau perluasan keilmuan di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan

baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi untuk memberikan kontribusi original dan teruji melalui riset secara mandiri

CPL-5

Mampu memformulasikan ide-ide baru (new research question) dari hasil riset yang dilaksanakan untuk pengembangan ilmu dan teknologi di bidang proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk yang mempunyai nilai tambah dengan proses secara kimia, fisika dan biologi

CPL-6

Menguasai teori sains dan rekayasa, rekayasa perancangan, metode dan teknik terkini yang diperlukan untuk analisis dan perancangan proses, sistem pemrosesan, dan peralatan yang diperlukan untuk mengubah bahan baku menjadi produk bernilai tambah

CAPAIAN PEMBELAJARAN MATA KULIAH

- CPMK-1 Mahasiswa menguasai teori, sains dan rekayasa beserta aplikasi dengan aspek teknik, ekonimi dan sosial
- CPMK-2 Mahasiswa mampu memecahkan permasalahan rekayasa dan teknologi dan merancang proses
- CPMK-3 Mahasiswa mampu memformulasikan gagasan baru dari hasil riset yang dilaksanakan
- CPMK-4 Mahasiswa mampu mengembangkan pemikiran logis, kritis, sistematis, dan kreatif melalui penelitian ilmiah, penciptaan desain atau karya seni dalam bidang ilmu pengetahuan dan teknologi dan menulisakn dalam laporan ilmiah dan laporan tesis

POKOK BAHASAN

- 1. Latar belakang
- 2. Maksud dan tujuan
- 3. Tinjauan pustaka
- 4. Metodologi
- 5. Hasil dan pembahasan
- 6. Kesimpulan penelitian

PRASYARAT

_

PUSTAKA

3. Buku Panduan Baku Mutu Program Pascasarjana ITS

4.	Pedoman Penulisan Tesis Pascasarjana ITS