

INSTITUT TEKNOLOGI SEPULUH NOPEMBER FACULTY OF CIVIL, PLANNING AND GEO ENGINEERING DEPARTMENT OF GEOMATICS ENGINEERING UNDERGRADUATE STUDY PROGRAM

Document Code

			SEMESTER	R LEARNING	G PLAN (SLP)					
COURSE NAME		CODE	COURSE GROUP		CREDITS (SKS)		SEMESTER	Date of		
									Preparation	
Physical Geodesy			CM235026	Geodesy and	Geodynamics	T=2	P=1	5	-	
AUTHORIZATION			SLP Developer	Course Group C	Course Group Coordinator			Program		
					Handoko, S.T., M.T.		Putra Maulida,	Putra Maulida, S.T., M.T., Ph.D		
Learning Outcomes (LO)	Expected Course	l Learnin	g Outcomes (ELO) that In	nposed in the						
	ELO-4	and Re	Able to apply mathematics, science, and engineering in the fields of Geodesy and Surveying, Hydrography, Photogrammet and Remote Sensing also Geographic Information Systems and Cadastral to gain a thorough understanding of the principl of engineering.							
	ELO-6		Able to identify, formulate, analyze and solve problems in the fields of Geodesy and Surveying, Hydrography, Photogrammet and Remote Sensing also Geographic Information Systems and Cadastral.							
	ELO-7	standa	Able to perform spatial data acquisition using modern measurement methods, geospatial data processing, using industr standard software, and making standard designs and analyzes in the fields of Geodesy and Surveying, Hydrography Photogrammetry and Remote Sensing also Geographic Information Systems and Cadastral.							
	Course L	earning (Outcomes (CLO)							
	CLO-1	Able to	Able to explain the main objectives of geodetic science in terms of determining the shape and size of the Earth.							
	CLO-2	Able to	Able to explain basic theories and measurement methods to determine the shape and size of the Earth.							
	CLO-3		Able to perform simple calculations to determine the shape and size of the Earth.							
	CLO-4	_	o explain the physical dynar							
	CLO-5		Able to apply the use of Earth's shape and size models for practical purposes in the field of surveying and mapping based their understanding of the theoretical basis and application of the shape and size of the Earth.							

	Matrix ELO - CLO							
	CLO	ELO-4	ELO-6	ELO-7				
	CLO-1	V						
	CLO-2		V	V				
	CLO -3	V	V					
	CLO -4		V					
	CLO-5			V				
Course Description	In this course, students will stu							
	through gravity measurements.							
	will know how the characterist							
	as perform simple calculations							
	shape and size of the Earth. Ear							
	this course. Students will be st	mulated to think critically ab	oout the use of Earth's sha	ape and size models in p	practical use in the field of			
	surveying and mapping.							
Course Materials	1. Basic geopotential theory							
	2. Normal gravity / reference g	gravity						
	3. Gravity anomalies							
	4. Height system and coordina							
	5. Method of measuring and re	ducing gravity data on a datu	m					
	6. Earth gravity modeling							
	7. Determination of geoid via S	tokes integral						
	8. The influence of the dynami	cs of the Earth on changes in t	the value of gravity					
References	Main:							
	1. Bomford, G. 1980. Geodesy,	Oxford University Press, Oxfo	rd					
	2. Heiskanen, W.A. and H. Mor	tz.1967. Physical Geodesy. Fr	eeman, San Francisco					
	3. Hofmann-Wellenhof, B. and	H. Moritz. 2005. Physical Geo	desy. Vienna: Springer					
	4. Torge, W. 2001. Geodesy. de	Gruyter, Berlin						
	5. Vaníček, P. and E.J. Krakiwsl	xy.1986. Geodesy: the Concep	ts. 2nd ed. Amsterdam: Els	sevier				
	6. Torge, W. 1989. Gravimetry.	de Gruyter, Berlin						
	7. Chuji Tsuboi. 1979. Gravity,	Allen & Unwin, London						
	8. Garland, G.D.1977. The Eart	h's Shape and Gravity, Pergan	non Press					
	Additional:							
		Theory in Gravity and Magnet	tic Applications, Cambridg	ge University Press, Cam	bridge			
				, , , , , , , , , , , , , , , , , , ,	3			

	2. Stacey, F. D and P.M. Davis. 2008. Physics of the Earth (4th Ed). Cambridge University Press, New York
Lecturer	1. Ira Mutiara Anjasmara, S.T., M.Phil, Ph.D
	2. Putra Maulida, S.T., M.T., Ph.D
	3. Akbar Kurniawan, S.T., M.T.
Prerequisite	1. Advanced Terestris Mapping
	2. Global Navigation Satellite System Survey
	Loarning Forms Loarning Mathods Student

Class/ Week	Lesson Learning Outcome (Sub-CLO)	Valuation		Learning Forms, Learning Methods, Student Assignments/Task [Estimated Time]		Learning Materials [References]	Weight (%)
		Indicators Criteria		Offline Online			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1-2	Able to explain the basic objectives of the science of Geodesy, especially the determination of the shape and size of the Earth	Accuracy in explaining the basic objectives of the science of Geodesy, especially the determination of the shape and size of the Earth	 Completeness of the material Depth of explanation and effectiveness of communication 	1. Lecture [2 x 50'] 2. Discussion [2 x 50'] 3. Response, Exercise [1 x 50'] 4. Self-Study [1 x 50']		 The main objectives of Geodesy Definitions in Physical Geodesy Review of physical and mathematical formulas in Physical Geodesy 	5
3	Able to explain basic geopotential concepts	Accuracy in explaining basic geopotential concepts	Completeness of the material Depth of explanation and effectiveness of communication	1. Lecture [1 x 50'] 2. Discussion [1 x 50'] 3. Exercises and Quizzes [1 x 50']		1. Force, Acceleration 2. Gravitational force, gravitational acceleration and gravitational potential 3. Centrifugal force, centrifugal acceleration and centrifugal potential	10

4 - 5	Able to explain the concept	Accuracy in	1. Completeness of	1. Lecture [2 x 50']	4. Gravity, acceleration of gravity, and potential of gravity 1. Theory and Solution	10
	of reference gravity and able to calculate the value of reference gravity.	explain the concept of reference gravity and able to calculate the value of reference gravity.	the material 2. Depth of explanation and effectiveness of communication	2. Discussion [2 x 50'] 3. Responses, Exercises and Tasks [2 x 50']	of Laplace's Equation 2. Reference surfaces of the Earth 3. Concept of Geoid and Ellipsoid 4. Normal gravity field 5. Potential gravity	
6	Able to apply the concept of reference gravity in calculating the value of gravity anomalies from corrected gravity measurement data and can explain the concept of isostasy in the process of gravity reduction.	Accuracy in applying the concept of reference gravity in calculating the value of gravity anomalies from corrected gravity measurement data and can explain the concept of isostasy in the process of gravity reduction.	1. Completeness of the material 2. Depth of explanation and effectiveness of communication	 Lecture [1 x 50'] Discussion [1 x 50'] Responses, Exercises and Tasks [1 x 50'] 	1. Gravity anomalies 2. Correction and reduction of gravity (free-air, bouguer, terrain, atmospheric) 3. Free-air gravity anomalies; simple bouguer gravity anomaly, complete bouguer gravity anomaly, Helmert anomaly 4. The concept of isostasy	15
7	Able to explain the concept of height and coordinate systems and can show the	Accuracy in explaining the concept of	1. Completeness of the material	 Lecture [1 x 50'] Discussion [1 x 50'] Response, Exercise [1 x 50'] 	1. Orthometric height system	10

	relationship between height systems and the concept of gravity.	height and coordinate systems and can show the relationship between height systems and the concept of gravity.	2. Depth of explanation and effectiveness of communication		 2. Dynamic height system 3. Normal height system 4. Undulation 5. Geodetic and astronomical coordinate systems 6. Vertical deflection 	
8	Midterm Evaluation / Midterm	Exam				50
9 – 10	Able to master the basic concepts of gravity measurement and perform gravity measurements terestrically	Accuracy in mastering the basic concepts of gravity measurement and perform gravity measurements terestrically	 Completeness of the material Depth of explanation and effectiveness of communication 	 Lecture [1 x 50'] Group Discussion [1 x 50'] Responses, Exercises and Tasks [1 x 50'] 	 Absolute and relative gravity Gravity survey on land Gravity survey at sea Airborne gravity survey Satellite altimetry Gravity satellites 	10
11 - 12	Able to explain basic concepts and procedures for modeling the physical Earth	Accuracy in explain basic concepts and procedures for modeling the physical Earth	 Completeness of the material Depth of explanation and effectiveness of communication 	 Lecture [2 x 50'] Discussion [2 x 50'] Response, Exercise [2 x 50'] 	1. Burns formula 2. Geodetic boundary value problems 3. Stokes Integral 4. Global geopotential model	10
13 – 14	Able to model geoids using the Stokes Integral method and Geoid Determination	Accuracy in modeling geoids using the Stokes Integral method and Geoid Determination	Completeness of the material Depth of explanation and effectiveness of communication	 Lecture [2 x 50'] Discussion [2 x 50'] Responses, Exercises and Tasks [2 x 50'] 	1. Direct numerical integration 2. Fast fourier transform (FFT) 3. Least squares collocation 4. Geoid Determination	20

15	Able to analyze the	Accuracy in	1. Completeness of	1.	Lecture [1 x 50']		1. Earth's rotation and	10	
	relationship between the	analyzing the	the material	2.	Discussion [1 x 50']		orientation: precision,		
	dynamics of the Earth with	relationship	2. Depth of	3.	Response, Exercise [1 x 50']		nutation, polar		
	changes in the value of the	between the	explanation and				movement, changes		
	distribution of Earth gravity.	dynamics of the	effectiveness of				in day length		
		Earth with	communication				2. Properties of earth		
		changes in the					dynamics: earth tides,		
		value of the					plate tectonics,		
		distribution of					postglacial rebound		
		Earth gravity							
16	6 Final Semester Evaluation / Final Semester Examination								