

INSTITUT TEKNOLOGI SEPULUH NOPEMBER FACULTY OF CIVIL, PLANNING AND GEO ENGINEERING DEPARTMENT OF GEOMATICS ENGINEERING UNDERGRADUATE PROGRAM

	SEMESTER LEARNING PLAN (SLP)								
COURSE NAME			CODE	COURSE GROUP		CREDITS		SEMESTER	COMPILATION DATE
Coordinate System and	d Transformati	on	CM234417	Geodes	y and Geomatics	T=2	P=1	4	-
AUTHORIZATION			SLP DEVELOPER		COURSE GROUP COORDINATOR		HEAD OF UNDERGRADUATE PROGRAM		
			Dr. Eko Yuli Handoko, S.T., M.T.		Prof. Dr. Eko Yuli Handoko, ST, MT		Putra Maulida, ST, MT, Ph.D		
Learning Outcome (LO)	Expected Le Course	earning Outo	omes (ELO) that Imposed	in the					
	ELO-4		nmetry, geographic info		engineering in the fields systems, and cadastral to		-		•
	ELO-5		to design survey and mapping activities using the latest technology in the fields of geodesy, surveying, hydrographic, remote ng, photogrammetry, and cadastral.						graphic, remote
	ELO-6		entify, formulate, analyze a nmetry, and cadastral.	ınd solve ı	problems in the fields of geo	odesy, survey	ring, hydro	ographic, remote s	sensing,
	Course Learning Outco								
	CLO-1	Able to ex	to explain the concept of a geodetic reference/datum system						
	CLO-2	Be able to methods	to explain the basic concepts of coordinate transformation and differentiate between various coordinate transf						te transformation

	CLO-3 A	Able to carry out 2-dimensional and 3-dimensional coordinate transformations in the field of geodesy/geomatics						
	CLO-4 A	ble to explain the conc	ept of transforr	nation between	datums and perfo	orm datum transformation calculations		
	CLO-5 A	Able to carry out coordinate transformations between zones in a certain projected coordinate system						
	N	Matrix ELO – CLO						
		CLO	ELO-4	ELO-5	ELO-6			
		CLO-1	V					
		CLO-2	V	V				
		CLO-3	V	V	V			
		CLO-4		V	V			
		CLO-5		V	V			
Course Description	This course cov	vers the fundamental co	ncepts and ap	plications of coo	rdinate systems in	the fields of geodesy and geomatics, including geodetic		
	reference syste	ems and datums. Studer	nts will study sp	pherical and ellip	soidal geometry,	various types of map projections, and calculation methods		
	on projection p	lanes and ellipsoids. Ac	ditionally, the	course teaches t	wo- and three-dir	mensional coordinate transformations, as well as		
	transformation	is between datums and	projection zon	es. Through this	material, students	s are expected to understand and accurately apply		
	coordinate tran	nsformation principles i	n modern surv	eying and mappi	ng contexts.			
Course Materials	1 Introd	uction and Review of (Geodesy Scienc	ce				
		inate System						
	-	cal &; Ellipsoidal Geon	netry					
		sy Datum						
	-	rojection						
		ation on the Projection						
		ations on the Ellipsoid		ng Geodesy Mair	n Problems)			
		inate Transformations						
		Transformation (Datu	•					
	10 Coordi	inate Transformation l	etween Proje	ction Zones				
References	Main Reference	ces:						
	Additional Ref	erences						
	:							
<u> </u>								

Prerequisite			Forms of Learning, Learning methods,			
Lecturer	Dr. Eko Yuli Handoko, ST, MT Ira Mutiara Anjasmara, ST, M.Phil, Ph.D Akbar Kurniawan, ST, MT Putra Maulida, ST, MT, Ph.D					

Class/ Week	Lesson Learning Outcome (Sub-CLO)	Ev	aluation	Forms of Learning, Learning methods, Student Assignments/Task, [Estimated time]		Learning methods, Student Assignments/Task, Learning Mate		Learning Materials [References]	Weight (%)
		Indicator	Criteria	Offline	Online				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
1	Able to explain and distinguish various coordinate systems used in the field of geodesy / geomatics		Completeness of material, depth of explanation, accuracy of answers, effectiveness of communication, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning		Introduction (geodesy science review) Coordinate System 1. Coordinate system parameters 2. 2-dimensional coordinate system (cartesian, polar, conversion between coordinate systems)	5		
				1 x 50'		3. 3-dimensional coordinate system (geocentric cartesian, topocentric cartesian, sphere, ellipsoid)			

2	Able to explain the concept of spherical and ellipsoidal geometry, as well as perform calculations on the plane of the sphere and ellipsoida	Completeness of material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning 1 x 50'	1. Spherical geometry (plane of the ball wedge, angle on the ball, spherical triangle, arc distance) 2. Ellipsoidal geometry (longitude, geodetic and geocentric latitude, ellipsoidal parameters, radius on ellipsoid, parallel distance, meridian distance, geodesic, and normal slice)
3	Able to explain the concept of geodesy reference system / datum	Completeness of material, depth of explanation, effectiveness of communication, accuracy of attitude, accuracy of application	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning 1 x 50'	Geodesy Datum 1. Reference System and Terms of Reference 2. Understandin g Geodesy Datum 3. Global Geodesy Datum (GRS80, WGS84, ITRF, etc) 4. Local Geodesy Datum

				(National Datum in	
				Indonesia: Genuk,	
				Monconglowe, ID74,	
				DGN95, SRGI2013)	
4-5	Able to explain the concept	Completeness of	Lecture		25
4-5	Able to explain the concept	Completeness of		Map Projection	25
	of map projection,	the material, depth	Teacher-	1. Introduction to	
	distinguish types of map	of explanation,	Centered Learning	Map Projection	
	projections, and determine	effectiveness	4 x 50'	(definition, provision,	
	projections appropriate for	Communication, acc	Discussion	linear distortion,	
	specific applications	uracy of attitude,	Student-	point scale factor)	
		accuracy of answers	Centered Learning	2. Map Projection	
			2 x 50'	Classification and	
			Practice / Quiz	Selection	
			Problem-based learning	- According to the	
			2 x 50'	projection field used	
				(azimuthal, cone,	
				cylinder)	
				- According to the	
				position of the axis of	
				plane symmetry	
				Projections used	
				(normal, oblique,	
				traversal)	
				- According to the	
				position of the	
				-	
				projection plane	
				against the earth	
1				(cut, offend)	

				- According to geometric terms (equidistan, conform, equivalent) 3. Map Projections used in Indonesia - Polyeder projection - Mercator Projection (UTM, TM-3°)	
6	Able to reduce geodetic size (angle and distance) from ellipsoidal plane to projection plane / flat plane	Completeness of the material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning 1 x 50'	Calculations on the projection plane - Grid Convergence - Correction of curvilinear distance to arc distance (arc-to-cord correction) - Convert Azimuth to Department Corner and vice versa	5
7	Able to perform geodetic calculations above the ellipsoidal plane and projection plane / flat plane	Completeness of material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz	Calculations on the Ellipsoidal Plane (Geodesy Main Problem Solving) 1. Direct Problem (SPG 1) 2. Inverse Problem (SPG 2)	5

			Problem-based learning 1 x 50'		
8	Midterm Evaluation / Midterm Ex	kam			50
9	Able to explain the basic concepts of coordinate transformation and distinguish various coordinate transformation methods	Completeness of the material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning 1 x 50'	Coordinate Transformation 1. Understanding and purpose of coordinate transformation 2. Coordinate transformation parameters (translation, rotation, scale) 2-dimensional Coordinate Transformation 1. 2D Conform Transformation 2. 2D Affine Transformation	10
10-12	Able to calculate 2- dimensional and 3- dimensional coordinate transformations in the field of geodesy / geomatics	Completeness of material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 6 x 50' Discussion Student- Centered Learning 3 x 50'	3-dimensional Coordinate Transformation 1. Transformation between Coordinate Systems Geodetic and Cartesian Coordinates	25

			Practice / Quiz	-Bowring Forward	
			Problem-based learning	(Geodetic to	
			3 x 50'	Cartesian)	
				-Bowring Reverse	
				(Cartesian to	
				Geodetic)	
				2. Transformation	
				between Projection	
				Coordinate System	
				and Geodetic	
				Coordinates	
				-Use tables	
				-Using Redfearn	
				formulas	
				3.Transformation	
				between Geodetic	
				and Geocentric	
				Coordinate Systems	
				4.Transformations	
				between Coordinate	
				Systems Geocentric	
				and Topocentric	
13-14	Able to explain the concept	Completeness of	Lecture	Datum 10	0
	of transformation between	material, depth of	Teacher-	Transformation	
	datums and perform datum	explanation,	Centered Learning	(Datum Shift)	
	transformation calculations	effectiveness of	4 x 50'	- Understanding and	
		communication,	Discussion	purpose of datum	
		accuracy of	Student-	transformation	
			Centered Learning		

		answers, accuracy of attitude	2 x 50' Practice / Quiz Problem-based learning 2 x 50'	- Wolf Exchange Conform Transformation - Molodensky- Badekas Konform transformation	
15	Able to perform coordinate transformations between zones in a specific projection coordinate system	Completeness of material, depth of explanation, effectiveness of communication, accuracy of answers, accuracy of attitude	Lecture Teacher- Centered Learning 2 x 50' Discussion Student- Centered Learning 1 x 50' Practice / Quiz Problem-based learning 1 x 50'	Coordinate Transformation between Projection Zones - On UTM projection - At TM-3° projection	5
16	Final Semester Evaluation / Final Semeste	er Examination	·		100