		SEMESTER LEARNING PLAN DEPARTMENT OF GEOMATICS ENGINEERING FACULTY OF CIVIL, PLANNING, and GEO ENGINEERING							
PROGRAM UNDERGRADUATE									
COURSE	NAME	Trans	sformation System and Map	Projection		CODE	RM184938		
SEMESTER Elective Course		ive Course			CREDITS	2 (two)			
LECTURERS		Ira Mutiara Anjasmara [Coord]							
		1	The concept of gravity						
		2	Source of gravity data						
COURSE MATERIALS		3	Dedicated gravity satellite mission						
	MATERIALS	4	Global Geoid Model						
		5	5 Gravimetric geoid						
		6	Methods of geoid modeling						
		7	7 Validation of geoid model						
		A	Able to apply mathematics, science, and engineering in the fields of geodesy, surveying, hydrography, remote sensing, photogrammetry, geographic						
EXPECTE	ED LEARNING		information systems, and cadastral to gain a thorough. understanding of the principles of engineering						
	ES THAT IMPOSED IN	C	•	alyze and solve	e problems in the fields of geodesy, surveying	ng, hydrographic, remot	e sensing, photogrammetry,	and	
THE COU			cadastral.						
		D	Able to perform spatial data acquisition using modern measurement methods, geospatial data processing, using industry standard software, and making						
			standard designs and analyzes in the fields of geodesy, surveying, hydrography, remote sensing, photogrammetry, and cadastral.						
COURSE LEARNING OUTCOMES		1	Able to explain the basic conce						
		2	Able to create gravimetric geoid models using various methods from gravity data obtained from measurements						
		3	3 Able to perform analysis and validation of the resulting geoid model						
ABILITY CATEGORIES		Cogn	itive Prosecess	Analyse					
		Knowledge Domain		Procedural					
		Psychomotor		Conscious control					
		Affective		Change of attitude					
			ive	Change of annuae					
Class #	Lesson learning outcome	Crite	eria dan Assessment Indicator	Weight	Learning Materials	Learning Experience	Learning Methods	Estimated	

Class #	Lesson learning outcome	Criteria dan Assessment Indicator	Weight	Learning Materials	Learning Experience	Learning Methods	Estimated Time
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1		Completeness of materials, the depth	5	Review of Geodesy science	Lecturer	Teacher-centered learning	1 x 50'
		of explanations, correctness of the		Earth's gravity concept in the geoid	Discussion	Student-centered learning	1 x 50'
	geoid modeling	answers, communication effectiveness, proper attitude		modeling			
2-3	Able to identify gravity data	Completeness of materials, the depth	10	Terrestrial gravity	Lecturer	Teacher-centered learning	1 x 50'
	sources that can be used in	of explanations, correctness of the		Marine gravity	Discussion	Student-centered learning	1 x 50'
	the geoid modeling	answers, communication		Airborne gravity	Practice	Problem-based learning	2 x 50'
		effectiveness, proper attitude		Altimetry satellite system	Assignment 1		
				Gravity dedicated satellite mission			
				(CHAMP, GRACE, GOCE)			
4-5	Able to explain the concept	Completeness of materials, the depth	15	Geoid determination from gravity data	Lecturer	Teacher-centered learning	1 x 50'
	of global geoid modeling and	of explanations, correctness of the		Global geoid models	Discussion	Student-centered learning	1 x 50'

6-7	Able to explain the concept of geoid determination and identify geoid models	answers, communication effectiveness, proper attitude Completeness of materials, the depth of explanations, correctness of the answers, communication effectiveness, proper attitude	20	- Static Model - Temporal Model - Topographic Gravity Field Model Methods of geoid determination - Gravimetric geoid - Geometric geoid - Hybrid geoid	Practice Assignment 2 Lecturer Discussion Practice	Problem-based learning Teacher-centered learning Student-centered learning Problem-based learning	2 x 50' 1 x 50' 1 x 50' 2 x 50'
	Able to convey the results of simple research in the form of report / papers and present them			Assessment	Oral presentation	Assessment	2 x 50'
9-10	Able to explain the concepts	Completeness of materials, the depth of explanations, correctness of the application, correctness of the answers, communication effectiveness, proper attitude	20	Stokes Integral Solution of Stokes Integral	Lecturer Discussion Practice Assignment 3	Teacher-centered learning Student-centered learning Problem-based learning	1 x 50' 1 x 50' 2 x 50'
11-13	Able to perform geoid modeling with various methods	Completeness of materials, the depth of explanations, correctness of the application, correctness of the answers, communication effectiveness, proper attitude	20	Direct numerical integration Fast Fourier Transform Least-squares Collocation	Lecturer Discussion Practice Assignment 4	Teacher-centered learning Student-centered learning Problem-based learning	2 x 50' 1 x 50' 3 x 50'
14-15	geoid models	Completeness of materials, the depth of explanations, correctness of the application, correctness of the answers, communication effectiveness, proper attitude	10	Metode-metode validasi geoid	Lecturer Discussion Practice	Teacher-centered learning Student-centered learning Problem-based learning	1 x 50' 1 x 50' 2 x 50'
	Able to convey the results of simple research in the form of report / papers and present them		100	Assessment	Oral presentation	Assessment	2 x 50'