	SEMESTER LEARNING PLAN					
	DEPARTMENT OF GEOMATICS ENGINEERING					
	FACULTY OF CIVIL, PLANNING, and GEO ENGINEERING					
	FACULTI OF CIVIL, PLANNING, and GEO ENGINEERING					
PROGRAM	UNDERGRADUATE					
	Satellite Geodesy	10	CODE	RM184411		
	IV (four) CREDITS 3 (three)					
	Mokhamad Nur Cahyadi, ST, MSc, PhD					
ILECTURERS	Dr Eko Yuli Handoko, ST, MT					
	1 The concept of cartesian and po	olar coordinate systems 2D and 3D.				
	2 The concept of reference frame					
COURSE MATERIALS	3 The concept of time systems an					
COURSE WATERIALS						
	5 The concept of a signal propagation medium (atmospheric layer).					
	6 Concept of Satellite Types and their applications such as VLBI, SLR, LLR, GRACE, GOCE, Altimetry and others.					
	D Able to perform spatial data acquisition using modern measurement methods, geospatial data processing, using industry standard software, and making					
EXPECTED LEARNING	standard designs and analyzes in the fields of geodesy, surveying, hydrography, remote sensing, photogrammetry, and cadastral.					
OUTCOMES THAT IMPOSED IN	1	Able to compile scientific reports and provide solutions based on leadership, creativity and communication skills as well as being responsible for the				
THE COURSE	work done.	work done.				
THE COCKSE	H Able to work in inter-disciplina	Able to work in inter-disciplinary and inter-cultural teams so they can compete at national and international levels.				
		Able to understand the concept of time systems.				
		Able to understand the 2D and 3D coordinate systems.				
COURSE LEARNING OUTCOMES	Able to understand both the celestial reference frame and the terrestrial reference frame.					
		Able to explain the concept of signal and signal propagation methods.				
		Able to explain the atmosphere and its role in satellite geodesy.				
		6 Able to explain about how VLBI, SLR, LLR, Altimetry, GNSS satellites work in data acquisition.				
ABILITY CATEGORIES	- 0	Analyse				
	Knowledge Domain	Procedural				
	Psychomotor	Conscious control	ous control			
	Affective	Change of attitude	of attitude			
	1			Estimated		

Class	Lesson learning outcome	Criteria dan Assessment Indicator	Weight	Learning Materials	Learning Experience	Learning Methods	Estimated Time
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Able to explain the time system	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	5%	1.1 Explanation of Syllabus, CourseStandings,1.2 definitions and concepts of satellitegeodesy	Lectures Discussion Exercise	Teacher-centered learning Student-centered learning	2 x 50' 2 x 50' 2 x 60'
				1.3 Definition and concept of time		Problem-based learning	
2-3	Able to know various kinds of time systems	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	10%	2.1 The Concept of Sidereal Time2.2 Universal Time2.3 Sidereal Time	Lectures Discussion Exercise	Teacher-centered learning Student-centered learning	2 x 50' 2 x 50' 2 x 60'
4	Able to understand the coordinate reference frame	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	10%	3.1 CIS coordinate reference framework3.2 CTS coordinate reference framework3.3 Transformation between CIS to CTS	Lectures Discussion Exercise	Teacher-centered learning Student-centered	2 x 50' 2 x 50'

6-7	Able to understand the concept of signals, signal propagation and bias Able to understand the concept of the orbit system	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	20%	 4.1 The concept of wave propagation 4.2 Ionosphere bias 4.3 Tropospheric bias 4.4 Effects of atmospheric bias on signal propagation 6.1 Components of the keplerian element 6.2 Perturbation on the keplerian element 6.3 Effects of orbital errors in data acquisition 	Lectures Discussion Exercise Lectures Discussion Exercise	Teacher-centered learning Student-centered learning Problem-based Teacher-centered learning Student-centered learning Problem-based learning	2 x 50' 2 x 50' 2 x 60' 2 x 50' 2 x 50' 2 x 60'
8			Mid s	emester evaluation		learning	
9-10	Able to explain the concepts and methods of data acquisition on VLBI, and GNSS	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	10%	9.1 Field orientation9.2 Count the number of points and proportional to area9.3 Calculating costs9.4 Place and select points	Lectures Discussion Exercise	Teacher-centered learning Student-centered learning Problem-based	2 x 50' 2 x 50' 2 x 60'
11-12	and methods of data	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	10%	9.5 Personnel mobility 11.1 Processing using scientific software 11.2 Processing using commercial software	Lectures Discussion Exercise	learning Teacher-centered learning Student-centered learning	2 x 50' 2 x 50' 2 x 60'
13-14	Able to explain the concepts and methods of data acquisition on Satellite Altimetry and GOCE	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	20%	13.1 Measurement using the radial method 13.2 Measurement using the net method	Lectures Discussion Exercise	Problem-based Teacher-centered learning Student-centered learning Problem-based	2 x 50' 2 x 50' 2 x 60'
15	Able to explain the concepts and methods of data acquisition on the GRACE Satellite	Material completeness, depth of explanation, effectiveness of communication, accuracy of attitude	5%	15.1 Measurement of GNSS on RTRW 15.2 Measurement of GNSS on land parcels	Lectures Discussion Exercise	Teacher-centered learning Student-centered learning Problem-based	2 x 50' 2 x 50' 2 x 60'
16			Final s	semester evaluation	•		T 1000
						TOTA	L 100%