

Program Study	Geophysical Engineering Department			
Course	hysical Geology			
Course Code	F184101			
Semester	(One)			
Credit	3 (T:3) SKS			
Lecturer	 Dr.Ir. Amien Widodo. M.Haris MF,S.T.,M.Eng. 			

Study Materials	Geology, med	hanics	S
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;
		3.3	understanding the theoretical concept of statistics to define the process complexity of a particular natural phenomena;

3.	understanding the principle and methods of mapping application that required in general geophysical engineering work;
3.1	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
3.3	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;
Specific 4. Skills	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
4.	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
4.	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
4.	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
4.	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;

	4.		being able to organize the data and present it again by utilizing information technology that suits their needs;		
	4.		capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and		
	4.		being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented, and poured in the form of scientific papers.		
LO - Course	[C4,P4,A4] Students are able to identify and describe geological objects as well as explain the diagenesis of geological phenomena found in the field. Students are able to hold the basic knowledge which includes the mechanical and chemical process on Earth.				

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8

1	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%
2	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%

3	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%
4	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%

5	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%
6	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and sea floor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%

7	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	10%
8			Mid Semest	er Evaluation			30%
9	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonics and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	Get to know the general formula of plate dynamics	

10	[C4,P4,A4] Students are able to understand continental dynamics and deformation between plates with geophysics (gravity and isostasy)	Introduction to deformation, the basic concept of gravity and plate isostasy [K10]: Introduction to gravity and isostasy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	the accuracy of explaining	5%
11	[C4,P4,A4] Students are able to analyse stress and strain	The concept and measurement of stress and strain [K11]: deformation, stress and strain.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining and comparing	
12	[C4,P4,A4] Students are able to understand the basic rheology	The basic concept and measurement of rheology [K12]: Introduction to reology.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12 :stress and strain	the accuracy of explaining	5%

13	[C4,P4,A4] Students are able to understand the concept of hotspot formation/volcanism and its relation to the plate movement, tectonic plume, fluid mechanics	The basic concept of fluid mechanics and volcanism [K13]: Introduction to fluid mechanics and vulcanism.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion Assignment-K13: Practice in making a language program for flow simulation in the Earth	the accuracy of explaining	10%
14	[C4,P4,A4] Students are able to understand the principle of heat transfer occurrence/ whole mantle convection	Heat transfer concept [K14]: Introduction to heat transfer.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
15	[C4,P4,A4] Students are able to understand the study case of Geodynamics through Geophysics	Study case comprehension in geodynamics through geophysics [K15]: Journal.ppt	Discussion;	TM: 1x(3x50") [BT+BM:2x(4x 60")]	Discussion Assignment-K15 :Presentation and resume study deodynamics in geophysics	the accuracy of explaining	
16	End Semester Evalua	tion					30%

- 1. Hamblin, W.K., 1982; The Earth's Dynamic Systems; 3rd Edition. Minesotta.
- 2. Thomson and Turk, 2007, Physical Geology, Sounders Golden series
- 3. Wilson, T. et al., "Physics and Geology", McGraw-Hill, 1975
- 4. Dana's Manual of Mineralogy, John Wiley and Sons, Inc., New York
- 5. Turcotte, D.L. and Schubert, G., 1982, Geodynamics : Applications of Continuum physics to geological problems, John Willey & Sons. Inc
- 6. Blatt, H., Tracy, R.J., Owens, B.R., 2006, Petrology: Igneous, Sedimentary, and Metamorphic, 3 rd

Program Study	eophysical Engineering Department			
Course	oduction to Geophysical Engineering			
Course Code	84102			
Semester	I (One)			
Credit	2 (T:2) SKS			
Lecturer	Dr. Widya Utama, DEA			

Study Materials	Geology, Physics		
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
	Knowledge	3.3	understanding the principle and methods of applied geophysics engineering started from acquiring data, processing and modelling for problem solving in certain fields in deep;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;

		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
LO - Course	simple geophysical	meth	able to recognise the physical characteristics of geological phenomena on Earth's surface through ods to acquire subsurface model and Earth's crust dynamics. By constructing and using simple to understand its usefulness based on the exploration purpose

Week	The Expected of Sub LO - Course	Learning Subject	Methods Estimati Lea		Student's Learning Experience	Criteria and Indicators	Weight (%)	
1	2	3	4	5	6	7	8	
1	GEOPHYSICAL GENERAL REVIEW IN SCIENCE	 Geophysical status in geosciences Investigation Geophysics Applied geophysics in geosciences on a large-scale Widiyantoro (Bab I; Kearey & Vine Chapter 1 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain geophysics existence in geosciences as well as its part in study the Earth	-	
2	Theory of Earth's Formation	1. Introduction Widiyantoro (Bab I)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, assignment	Explain the origin of human assumption on Earth's formation	5%	

3	SHAPE AND SIZE OF THE EARTH	 Earth as a perfect spherics Earth as a round ellipsoid Earth as a triaxial ellipsoid Earth's shape from satellite observation Tachyudin (Bab II) 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the invention of Earth's shape and size	-
4	EARTH'S INTERIOR AND SEISMOLOGY	 Determination of Earth's mass, moment of inertia, and rotation Determination of Earth's density value, constant and gravity acceleration Widiyantoro (Bab 2-4) 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, quiz	Explain the determination of Earth's physical parameters	10%
5	EARTHQUAKE (1)	1. Mechanism, source, location, parameters, and instrumentation of earthquake Fowler (Chapter 2-4)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, assignment	Explain about earthquake and things related to it.	5%
6	EARTHQUAKE (2)	1. The theory of elastic wave, seismic wave characterization, seismic phase, and their relation to earthquake Fowler (Chapter 2-4)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the seismic wave propagation and its relation to earthquake	-

7	EARTHQUAKE (3)	1. The implication of seismology in Earth's interior structure 2. The implication of other geosciences in Earth's interior structure Fowler (Chapter 2-4)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the implication of seismology in study the Earth's interior structure	-
8		Mid Se	emester Evalua	tion			30%
9	GRAVITY	 Introduction Basic concept of gravity Earth's potential and gravity acceleration Earth's gravity acceleration Fowler Chapter (5) 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the basic concept of gravity	-
10	GRAVITY	 Gravity acceleration measurement Earth's shape and illustration Geoid and gravity anomaly 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, assignment	Explain gravity measurement and its part in knowing Earth's shape and illustration	5%
11	GRAVITY	The concept and calculation of isostasy Flexure litosfer and mantle viscosity	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the concept of isostasy and flexure lithosphere to understand Earth's crust dynamics	-

12	EARTH MAGNETISM	1. The concept and scope of basic geomagnetic 2. Measurement of magnetic field, prime field (properties and cause) and the theory of dynamo Tachyudin (Bab IV)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, quiz	Explain the basic concept and measurement of geomagnetic field	10%
13		Secular variation and external magnetic field Rock magnetism	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, assignment	Explain the basic concept of paleomagnetic, external magnetic field and how to record a magnetism in a rock	5%
14	HEAT FLOW ON EARTH	Introduction Conductive heat flow and simple geothermal calculation Heat flow on Earth Tachyudin (Bab VI)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Explain the mechanism of heat flow on Earth's surface	-
15	HEAT FLOW ON EARTH	 Adiabatic process, melting in mantle, and convection on mantle Core thermal structure and forces that work on a plate 	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Menjelaskan mekanisme aliran panas di bagian dalam bumi. Explain the mechanism of heat flow in Earth's subsurface	-

16	End Semester Evaluation	30%	

- 1. Reynolds, John M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, England.
- 2. Jones, E. J., 1999, Marine Geophysics, John Wiley & Sons.
- 3. Turcotte, D.L., 1982, Geodynamics Application of continue Physics to geological Problems, John Wiley & Sons
- 4. Fowler, C.M.R., 1990, The Solid Earth. Cambridge University Press.
- 5. Fu, L., and Cazenave, A., satellite altimetry and Earth sciences, Academic Press, 2001.

Program Study	Geophysical Engineering Department
Course	Geophysical Computing
Cource Code	RF184203
Semester	II (Two)
Credit	3 (Three) SKS
Lecturer	Dr. Dwa Desa Warnana, S.Si., M.Si.

Study materials	Progamming, Mathema	atics	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;
		3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
			understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
		3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;

	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into			
			procedures, processes, systems or methodologies of geophysical engineering, to create or			
			modify models in solving complex engineering problems in the fields of environment,			
	settlement, marine and energy with the concept of sustainable development;					
		4.10	being able to organize the data and present it again by utilizing information technology			
			that suits their needs;			
LO – Course	[C3,P3,A3] Students a	[C3,P3,A3] Students are able to apply the basics of programming, concepts, and application in geoscience field.				

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Students can	MATLAB	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand the basics	programming.	120 minute		discussion	interact	
	of MATLAB						
	programming.		Discussion				
			30 minute				
2	Students can solve a	Numerical linear	Direct Lecture	150 minute	Presentation,	Task result	5%
	system of linear	equation solving	120 minute		discussion,		
	equations	(MATLAB)			task		
	numerically		Discussion				
	(MATLAB)		30 minute				
3	Students can do	Numerical	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	numerical	inverse matrix	120 minute		discussion	interact	
	computations from	computation.					
	inverse matices.		Discussion				
			30 minute				

4	Students can do	Numerical	Direct Lecture	150 minute	Presentation,	Quiz result	10%
	numerical	computation	120 minute		discussion,		
	computation using	using the			quiz		
	the decomposition	decomposition	Discussion				
	method.	method.	30 minute				
5	Students can do	Numerical	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	numerical	computation	120 minute		discussion,		
	computation using	using the iterative			practicum		
	the iterative method.	method	Discussion				
			30 minute				
6	Students can do	Interpolation	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	interpolation	numerical	120 minute		discussion,		
	numerical computing.	computing			practicum		
			Discussion				
			30 minute				
7	Students can do	Extrapolation	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	extrapolation	numerical	120 minute		discussion	interact	
	numerical computing.	computing					
			Discussion				
			30 minute				
8			Mid Semester Evalu	ation			25%
9	Students can do	Numerical curve	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	numerical curve	fitting computing.	120 minute		discussion	interact	
	fitting computing.						
			Discussion				
			30 minute				
10	Students can compute	Numerical	Direct Lecture	150 minute	Presentation,	Task result	5%
	numerical nonlinear	computation of	120 minute		discussion,		
	equations.				task		

		nonlinear	Discussion				
		equations.	30 minute				
11	Students can do	Differential	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	differential numerical	numerical	120 minute		discussion	interact	
	computing.	computing.					
			Discussion				
			30 minute				
12	Students can do	Integral	Direct Lecture	150 minute	Presentation,	Quiz result	10%
	integral numerical	numerical	120 minute		discussion,		
	computing.	computing.			quiz		
			Discussion				
			30 minute				
13	Students can	Numerical	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	understand numerical	computing in the	120 minute		discussion,		
	computing in the	geophysics field.			practicum		
	geophysics field.		Discussion				
			30 minute				
14	Students can	Numerical	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	understand numerical	computing in the	120 minute		discussion,		
	computing in the	geophysics field.			practicum		
	geophysics field.		Discussion				
			30 minute				
15	Students can	Numerical	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand numerical	computing in the	120 minute		discussion	interact	
	computing in the	geophysics field.					
	geophysics field.		Discussion				
			30 minute				
16			End Semester Evalu	aation			25%

- 1. Yang , W.Y., Chung, W.T., Morris, J., "Applied Numerical Methods Using MATLAB"., John Wiley & Sons, 200
- 2. Kiusalaas, J., "Numerical Methods in Engineering with MATLAB.", cambridge university press, 2005

Program Study	Geophysical Engineering Department
Course	Fundamental Electronics
Course Code	RF184304
Semester	3 (T:2, R:1) SKS
Credit	III (Three)
Lecture	Mariyanto

Study Materials	Electricity, Mathematics		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.2	being able to show independent, quality, and measurable performance;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex

		engineering problems in the fields of environment, settlement, marine energy with the concept of sustainable development; 4.10 being able to organize the data and present it again by utilizing information							
					organize the data and at suits their needs;	d present it again	by utilizing inform	ation	
LO – Co		C3,P3,A2] Students can de electronic components	_			onics, the charac	teristics and way of	f working of	
Week	The Expected of	Learning	Learnin	ng Methods	Time Estimation	Student's	Criteria and	Weight	
	Sub LO - Course	e Subject				Learning	Indicators	(%)	
						Experience			
1	2	3		4	5	6	7	8	
1	Students are able to	Bacics concepts,	Direct Lec	ture	150 minute	Presentation,	Liveliness of	-	
	explain the basic of	charge, current,	120 minute	2		Discussion	interact		
	electrical circuits.	voltage							
			Discussion						
			30 minute						
2	Students are able to	The law of	Direct Lec	ture	150 minute	Presentation,	Task result	5%	
	explain the law of	conservation	120 minute	2		Discussion,			
	conservation of	energy, power,				Task			
	energy, power, and		Discussion						
	circuit elements.	elements.	30 minute						
3	Students are able to		Direct Lecture		150 minute	Presentation,	Liveliness of	-	
	explain the basic la	_	120 minute	2		Discussion	interact		
	of electronics and	Kirchhhoff's							
	parts of the circuit.	current law,	Discussion						
		Kirchhhoff's	30 minute						
		voltage law.							

4	Students can use	Resistor, voltage	Direct Lecture	150 minute	Presentation,	Quiz result	10%
	voltage and current	divider circuit,	120 minute		Discussion,		
	divider methods to	current divider			quiz		
	solve circuit	circuit, wye-delta	Discussion				
	problems.	transformation.	30 minute				
5	Students are able to	Node analysis	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	solve series problems	method.	120 minute		Discussion,		
	using Node analysis				Practicum		
	method.		Discussion				
			30 minute				
6	Students are able to	Mesh analysis	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	solve series problems	method.	120 minute		Discussion,		
	using Mesh analysis				Practicum		
	method.		Discussion				
			30 minute				
7	Students are able to	Supernode,	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	apply Node and Mesh	supermesh	120 minute		Discussion	interact	
	analysis method for						
	supernode and		Discussion				
	supermesh cases.		30 minute				
8			Mid Semester Evalu	ation			25%
9	Students are able to	Diode, transistor	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	solve the diode and		120 minute		Discussion	interact	
	transistor circuit						
	problems.		Discussion				
			30 minute				
10	Students are able to	Capasitor and	Direct Lecture	150 minute	Presentation,	Task result	5%
	understand the	inductor circuits,	120 minute		Discussion,		
		the equivalent			Task		

	capacitor and	value of a series	Discussion				
	inductor circuits.	and parallel arrangement	30 minute				
11	Students are able to solve the problems of the 1 st orde series.	RC and RL circuits are free source, RC and RL circuits with short responses.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, Discussion	Liveliness of interact	-
12	Students are able to solve the problems of the 2 nd orde series.	Source-free RLC circuit, RLC circuit with short response.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, Discussion, quiz	Quiz result	10%
13	Students are able to understand sinusoid signals and phasor analysis.	Sinusoid signals and phasor analysis.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, Discussion, Practicum	Practicum report	5%
14	Students are able to apply sinusoidal steady-state analysis.	Sinusoidal steady-state analysis, superposition theorem, source transformation.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, Discussion, Practicum	Practicum report	5%
15	Students are able to apply AC electrical power analysis.	AC electrical power analysis	Direct Lecture 120 minute Discussion	150 minute	Presentation, Discussion	Liveliness of interact	-

		30 minute			
16		End Semester Evalua	ntion		25%

- 1. Alexander, CK., Sadiku, MNO., Fundamental of Electric Circuits, McGraw-Hill, New York
- 2. Johnson, David E, et al., Electric Circuit Analysis, Prentice-Hall Inetrnational Edition

Program Study	Geophysical Engineering Department
Course	Rock Physics
Course Code	RF184305
Semester	III (Three)
Credit	4 (T:3,P:1) SKS
Lecturer	Anik Hilyah, S.Si., M.T.

Study Materials	Intoduction: background and	intoduction: background and basic understanding of rock physics, rocks as part of the earth's crust and soil as a result of							
	chemical-physical weathering	chemical-physical weathering of rocks, rocks and soil as a constituent of tha earth's crust.							
	Measurement and modeling of rock physics characteristics: design of acquisition and measurement of rock physics data								
	at the laboratory scale and its development at the field scale.								
	Variables and parameters of i	rock cha	racteristics: solid materials (matrix), pore space and fluid content in the pores that						
	affect each other.								
	Application: relation of rock of	character	ristics at various scales of rock phyics measurement and its application in						
	geophysical exploration in the	e field.							
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise						
(LO)		1.7	independently;						
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the						
			context of development or implementation of science and technology that						
			concerns and implements the value of humanities in accordance with their area of						
			expertise;						
		2.7	being able to take responsibility for the achievement of group work and supervise						
			and evaluate the work completion assigned to the worker under his or her						
	responsibility;								
		2.8	being able to conduct self-evaluation process to work group under his or her						
			responsibility, and able to manage learning independently;						

	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	Specific Skills	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
LO - Course	laboratory scale rock physics	variable d the co	ncepts and relationships between rock physical variables to extract important

Week	The Expected of	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course				Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Students are able to	Introduction of	Direct lecture and	150 minute	Discussion	The ability to	1,8 %
	know what will be	rock phyics	discussion		and task	describe each	
	learned in the Rock					rocks.	
	Physics course and	■ General					
	understand the	classification and					
	classification and	characteristics of					
	characteristics of	igneous,					
	each rock.	sedimentary, and					
		metamorphic					
		rocks.					

2	Students are able to	■ Porosity	Direct lecture and	150 minute	Presentation,	Able to read	1,8 %
	know various	• Specific Internal	discussion		discussion and	simple log data	
	physical parameters	Surface			task	shows the	
	of rock pore space.	Saturation				physical	
		Permeability				parameters of	
		Wettability				rocks.	
		Capillary Pressure					
		Sandstone case					
		study					
3	Students are able to	■ The principle of	Direct lecture and	150 minute	Presentation,	Able to explain	1,8 %
	understand NMR's	NMR measurement	discussion		discussion and	the principle of	
	principles and their	■ Relaxation			task	NMR physically	
	application in the log	mechanism				and numerically.	
	data.	■ Case Study					
4	Students are able to	 Definisi dan jenis 	Direct lecture and	150 minute	Presentation,	Able to	1,8 %
	understand the	densitas	discussion		discussion	distinguish	
	concept of density	Densitas berbagai				between types of	
	and measurement	batuan				density and taje	
	method in laboratory.					laboratory scale	
						measurements.	
5	First Quiz (Formative)	Evaluation – Evaluation	which is intended to imp	rove the learning p	process based on the	he assessment that	10 %
			has been done)				
6	Students are able to	■ The Concept of	Direct lecture and	150 minute	Presentation,	Able to	1,8 %
	understand	radioactive	discussion		discussion and	understand the	
	application of	■ Nature			task	principle of	
	radioactive method	radioactivity				radioactive	
	on formation	■ Gamma radiation				measurement.	
	evalution.	■ Netron raduation					

7	Student are able to understand the elastic properties of rock and its application to seismic.	 Radioactive applications in formation Sandstone case study Elasticity of rocks Velocity of igneous, sedimentary, and metamorphic rocks. Anisotrophy Attenuation Sandstone case 	Direct lecture and discussion	150 minute	Presentation, discussion	Able to distinguish primary and secondary wave velocity.	1,8 %
		study					
8	Mid Semester Evaluat	ion (Formative Evaluation	on: Evaluation which is assessment that has bee	_	the learning pro-	cess based on the	20 %
9	Students are able to understand geomechanical concepts and its application to geotechnics.	 Basic concepts of geomechanics Geomechanical processes Correlation between static and dynamic modulus Correlation between seismic velocity and rock strength 	Direct lecture and discussion	150 minute	Presentation, discussion and task	Able to understand stress, strain, and its application.	1,8 %

10	Students are able to	■ Electrical	Direct lecture and	150 minute	Presentation,	Able to read	1,8 %
	understand the	properties of rocks	discussion		discussion	resistivity value	
	electrical properties	Resistivity of rocks				in the log data.	
	of rocks and its	■ Clean rocks					
	application in log	Shaly rocks					
	data.	Dielectric					
		properties of rocks					
		■ Sandstone case					
		study					
11	Students are able to	■ Electrical	Direct lecture and	150 minute	Presentation,	Able to read	1,8 %
	understand the	properties of rocks	discussion		discussion	resistivity value	
	electrical properties	■ Resistivity of rocks				in the log data.	
	of rocks and its	■ Clean rocks					
	application in log	Shaly rocks					
	data.	■ Dielectric					
		properties of rocks					
		 Sandstone case 					
		study					
12	Quiz 2 (Formative-I	Evaluation Evaluation into	ended to improve the lea	arning process base	ed on the assessme	ent that has been	10 %
			done)				
13	Students are able to	■ Thermal properties	Direct lecture and	150 minute	Presentation,	Able to	1,8 %
	understand the	in minerals and	discussion		discussion and	understand the	
	thermal concepts of	pore fillers			task	thermal	
	rocks.	■ Thermal properties				processes in	
		of rock				rocks.	
		■ Models					
14	Students are able to	■ The basic concept	Direct lecture and	150 minute	Presentation,	Able to	1,8 %
	understand the	of magnetic	discussion		discussion and	distinguish	
					task	various types of	

	magnetic properties of rocks.	Magnetic properties of rocks.				magnetic properties of the rocks.	
15	Correlation between physical parameters.	 Log interprestation for determining porosity and mineral composition Correlation between thermal conductivity and elastic wave velocity 	Direct lecture and discussion	150 minute	Presentation, discussion	Able to know the correlation between the properties of rock physics.	1,8 %
16			End of Semester Eval	uation			20 %

- 1. Schoon, J.H., 1998, Physical Properties of Rocks: Fundamental and Principles Of Petrophysics, Pergamon.
- 2. Bowless J E, 1979, Physical and Geotechnical Properties of Soils, Mc Graw hill Co, Tokyo.
- 3. Mavko, Gary., et al, 2009, The Rock Physics Handbook, Cambridge University Press, UK.
- 4. Terzghy K, dkk, 1997, Soil Mechanics in Enginering Practise, Prantice Hall, NY.

Program Study	Geophysical Engineering Department
Course	Mathematical Geophysics
Course Code	RF184306
Semester	4 (T:3,R:1) SKS
Credit	III (Three)
Lecturer	1. Dr. Ayi Syaeful Bahri, S.Si., M.T.
	2. Mariyanto, S.Si., M.T.
	3. M. Singgih Purwanto, S.Si., M.T.

Study Materials	Physics, Mathemati	ics			
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;		
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;		
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;		
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;		
LO - Course	[C3,P3,A3] Students are able to apply the basic concepts of Geophysical Mathematics and apply them in the Geophysics problems. Students are able to solve vector problems, SPL, matrices, series, complex numers, integrals, Ordinary Differential problems, Partial Differential Equations, Fourier, and other special functions.				

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	Students are able to understand the importance of mathematics to solving geophysical problems.	Introduction, the bacis concepts of mathematic in Geophysics.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion	Liveliness of interact	-
2	Students are able to solve the convergence test.	Series, convergent series, divergent series, convergent test, rank series	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion, task	Task result	5%
3	Students are able to solve complex algebra problems.	Complex numbers, complex fields, complex algebra.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion	Liveliness of interact	-
4	Students are able to do calculation with Euler's formula.	Infinite series, complex rank, euler formula, rank and root of complex numbers.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion, quiz	Quiz resut	10%
5	Students are able to solve trigonometric, exponential,	Trigonometric functions, exponential	Direct Lecture 120 minute	150 minute	Presentation, discussion, task	Task result	5%

	logarithmic,	functions,	Discussion				
	hyperbolic function	logarithmic	30 minute				
	equations.	functions,					
		hyperbolic					
		function.					
6	Students are able to	Linear algebra,	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	solve linear algebra	matrice,	120 minute		discussion	interact	
	problems.	determinats,					
		cramer rules.	Discussion				
			30 minute				
7	Students are able to	Vector, line, area,	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	solve matrix	matrix operation.	120 minute		discussion	interact	
	operations.						
			Discussion				
			30 minute				
8			Mid Semester Evalu	ation			30%
9	Students are able to	Partial	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	solve partial	derivatives, chain	120 minute		discussion	interact	
	derivative problems.	rules, implicit					
		derivatives.	Discussion				
			30 minute				
10	Students are able to	Partial derivative	Direct Lecture	150 minute	Presentation,	Task result	5%
	solve partial	application for	120 minute		discussion,		
	derivative application	minimum			task		
	problems.	maximum cases,	Discussion				
		Lagrange	30 minute				
		multiplers,					
		Leibniz rules.					

11	Students are able to	Fold integrals,	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	do fold integral	double integrals,	120 minute		discussion	interact	
	calculations.	triple integrals.					
			Discussion				
			30 minute				
12	Students are able to	Jacobian, surface	Direct Lecture	150 minute	Presentation,	Quiz resut	10%
	solve integral	integrals,	120 minute		discussion,		
	application problems.	application			quiz		
		integrals.	Discussion				
			30 minute				
13	Students are able to	Vector analysis,	Kuliah	150 minute	Presentation,	Task result	5%
	solve vector	vector	120 menit		discussion,		
	problems.	multiplication,			task		
		vectir derivation,	Diskusi				
		terrain, gradient.	30 menit				
14	Students are able to	Integral lines,	Kuliah	150 minute	Presentation,	Liveliness of	-
	do vector operations.	green theorem,	120 menit		discussion	interact	
		divergence, curl,					
		stokes theorem.	Diskusi				
			30 menit				
15	Students are able to	Persamaan	Kuliah	150 minute	Presentation,	Liveliness of	-
	solve partial	diferensial	120 menit		discussion	interact	
	differential equations.	parsial,					
		persamaan	Diskusi				
		laplace,	30 menit				
		persamaan					
		poisson					
16			End Semester Eva	luation			30%

- 1. Hubral, P., Mathematical Methods for Geophysics, University of Karlsruhe Press, 2001.
- 2. Michael S. Zhdanov, Geophysical Inverse Theory and Regularization Problems, Elsevier, 2002.
- 3. Boas, ML, Mathematical Method in Physical Sciences, Jhon Wiley and Sons 3rd edition, 2006.
- 4. Kreyzig, Erwin, advance Engineering Mathematics, Jhon Wiley and Sons 9th edition, 2006

Program Study	Geophysical Engineering Department				
Course	Structural Geology				
Course Code	RF184307				
Semester	III (Three)				
Credit	3 (T:2, P:1) SKS				
Lecturer	Dr. Ir. Amien Widodo, M.S.				

Study Materials	Geology, Mechanics, De	Geology, Mechanics, Deformation, Petrology							
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;						
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;						
		2.7 being able to take responsibility for the achievement of group work and supervithe work completion assigned to the worker under his or her responsibility;							
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;						
	Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;						
		3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;						

		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;			
		3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;			
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;			
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;			
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;			
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;			
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;			
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and			
LO - Course	[C4,P4,A4] Students are able to identify the elements of geological structure, able to describe and analyse as well as expligeological structure event. Students are able to define the correlation between tectonic and geological structure event.					

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand structural geology and Earth's constituent components(Earth Structure)	Introduction to Earth Structure [K1]: Earth Structure.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (Comprehension of Earth's components from the core to the crust and its relation to structural geology)	the accuracy of explaining	
2	[C4,P4,A4] Students are able to understand crust deformations (Divergent, Convergent, and Transform)	Introduction to Crust Deformation [K2] : Tectonic Deformation Part 1.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (types of tectonic crust movement); Assignment-K2: Resume on divergent, convergent, and transform process	Get to know of plate movements	
3	[C4,P4,A4] Students are able to explain the difference of Brittle and Ductile	Introduction to Sedimentary Stratigraphy on sedimentary depositional environment [K3]: Brittle and Ductile.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (sedimentary depositional environment); Assignment-K10:depositional environment through rock components exercises	Get to know of sedimentary depositional environment	

4	[C4,P4,A4] Students are able to classified sedimentary rock through its component and its depositional environment	The concept of sedimentary stratigraphy on various depositional environment [K4]: Introduction to sedimentary depositional environment.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (sedimentary depositional environment); Assignment-K4: Make a sedimentary rocks classification table	Get to know clearly of sedimentary rock classification	
5	[C4,P4,A4] Students are able to understand carbonate sedimentary rock	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate sedimentary rock.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (carbonate sedimentary rock); Quiz-K5: Clastic Rock and Carbonate Rocks (components)	Get to know of carbonate rocks component	
6	[C4,P4,A4] Students are able to understand the genesis of carbonate rocks (differences in clastic rocks genesis)	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate rocks genesis.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K6: carbonate rocks genesis exercises	Get to know of carbonate rocks genesis	

7	[C4,P4,A4] Students are able to understand the genesis of sedimentary rocks, the components, textures, structures, minerals, as well as explain the depositional environment and its classification	The concept of sedimentary stratigraphy on clastic and non-clastic rocks [K7]: Resume of sedimentary stratigraphy on clastic and non-clastic rocks.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (clastic and non-clastic rocks); Assignment-K7: differences between clastic and non-clastic rocks exercise	Get to know the differences between clastic and non-clastic rocks	
8			Mid Semester	Evaluation			30%
9	[C4,P4,A4] Students are able to understand about stratigraphy and the laws of stratigraphy	Introduction to sedimentary stratigraphy, the principle of stratigraphy [K9]: Introduction to the principle of stratigraphy.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (the principle of stratigraphy);	Get to know the laws of stratigraphy	
10	[C4,P4,A4] Students are able to understand the differences in stratigraphic science (lithostratigraphy, chronostratigraphy, biostratigraphy)	Introduction to lithostratigraphy, chronostratigraphy, and biostratigraphy [K10]: Introduction to advanced stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (comprehensive knowledge in stratigraphy); Assignment-K10: lithostratigraphy, chronostratigraphy, and biostratigraphy exercises	the accuracy of explaining	5%

11	[C4,P4,A4] Students are able to analyse the correlation of rocks	The basic concept of sedimentary rocks correlations (understand datum/keybed) [K11]: rocks correlation.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of comparing and explaining	
12	[C4,P4,A4] Students are able to analyse the correlation of rocks (lithocorrelation, chronocorrelation, and biocorrelation)	Comprehension of the differences in lithocorrelation, chronocorrelation, and biocorrelation [K12]: lithocorrelation, chronocorrelation, and biocorrelation, pt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12: Stratigraphy and Correlation	the accuracy of explaining	5%
13	[C4,P4,A4] Students are able to read a regional stratigraphy and its use	The basic concept of regional stratigraphy reading [K13]:Regional geology map.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion Assignment -K13: Practice on simulating the flow in the earth with program language	the accuracy of explaining	10%

14	[C4,P4,A4] Students are able to understand the sequence stratigraphy	The concept of sequence stratigraphy [K14]: Introduction to Sequence Stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
15	[C4,P4,A4] Students are able to understand a stratigraphy, correlation, and sequence of rocks	Comprehensive understanding of sedimentary stratigraphy [K15]: Journal.ppt	Discussion	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion Assignment-K15: Presentation and resume about sedimentary stratigraphy	the accuracy of explaining	
16			End Semester	Evaluation			30%

- 1. "Billings, M.P., 1982, Structural Geology, Prentice Hall, New Delhi.
- 2. Ragan, D. R., Structural Geology, Geometrical Technique, 1979, John Willey
- 3. Davis, G.H., Reynolds, S.J., and Kluth, C.F., 2012, Structural Geology of Rock and Regions: 3rd edition, John and Wiley and Sons, Inc., 835p.
- 4. Fossen, H., 2010, Structural Geology, Cambridge University Press., 463p.
- 5. Modul Praktikum Geologi Struktur Departemen Teknik Geofisika ITS
- 6. Twiss, R. J. and Moore, E. M., 1992, Structural Geology: W. H. Freeman and Company, 532 p.
- 7. Suppe, J., 1985, Principles of Structural Geology: Prentice-Hall, Inc., 537p."

Program Study	Geophysical Engineering Department						
Course	dimentology and Stratigraphy						
Course Code	RF184308						
Semester	III (Three)						
Credit	3 (T:3) SKS						
Lecturer	Dr. Ir. Amien Widodo, M.S.						

Study	Geology, Mechanics, Sec	Geology, Mechanics, Sediments, Stratigraphy								
Materials										
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;							
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;							
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;							
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;							
	Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;							
		3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;							

	3.10	understanding the concepts and principles of environmental preservation in general from geophysical engineering activities;
	3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.9	being able to recognize the difference between land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and

CP – Mata Kuliah

[C4,P4,A4] Students are able to understand sedimentary rock genesis and its relation in time and space. Both definitions are used to understand the geometry of sedimentary rock layers that use to interpret the distribution and properties of the rock, along with its interpretation and calculation of economic values in the sedimentary rocks. Students are able to identify various types of sedimentary rocks and recognize it physically in the laboratory. Students are able to apply the stratigraphy correlations for stratigraphic mapping. Students are also able to understand the economic value of sedimentary rock and able to read and serve stratigraphic map for exploration and development purposes.

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand the component and genesis of sedimentary rocks	Introduction to Sedimentary Stratigraphy on mineral composition of sedimentary rock and its genesis [K1]: Component and Genesis of Sedimentary Rocks.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (Review on sedimentary rocks component and mineral composition	the accuracy of explaining	
2	[C4,P4,A4] Students are able to understand the texture and structure of sedimentary rocks	Introduction to Sedimentary Stratigraphy of depositions including the texture and structure formed simultaneously with syn- deposition or post- deposition [K2]: Introduction to the Texture and Structure of Sedimentary Rocks.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (textures and structures of sedimentary rocks); Assignment-K2: Resume on Component and Genesis of Sedimentary Rocks	Get to know of Sedimentary Rocks in general	

3	[C4,P4,A4] Students are able to explain the sedimentary rocks deposition environment reviewed from its components including its textures, structures, and minerals.	Introduction to Sedimentary Stratigraphy, sedimentary rock depositional environment [K3]: Introduction to Sedimentary Stratigraphy depositional environment.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (sedimentary rock depositional environment); Assignment- K3:Exercise depositional system comprehension through rocks component	Get to know of sedimentary rock depositional environment
4	[C4,P4,A4] Students are able to classified sedimentary rock through its components and depositional environment	The concept of sedimentary stratigraphy on a depositional environment [K4]: Introduction to Sedimentary rock depositional environment.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (sedimentary rock depositional environment); Assignment-K4: Make a sedimentary rock classification table	Get to know of sedimentary rock classification clearly
5	[C4,P4,A4] Students are able to understand carbonate sedimentary rock	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate sedimentary rock.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (carbonate sedimentary rock); Quiz-K5: Clastic Rock and Carbonate Rocks (components)	Get to know of carbonate rocks component

6	[C4,P4,A4] Students are able to understand the genesis of carbonate rocks (differences in clastic rocks genesis)	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate rocks genesis.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (plate dynamics in geophysics); Assignment-K6: carbonate rocks genesis exercises	Get to know the genesis of carbonate rocks	
7	[C4,P4,A4] Students are able to understand the genesis of sedimentary rocks, the components, textures, structures, minerals, as well as explain the depositional environment and its classification	The concept of sedimentary stratigraphy on clastic and non-clastic rocks [K7]: Resume of sedimentary stratigraphy on clastic and non-clastic rocks.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (clastic and non-clastic rocks); Assignment-K7: differences between clastic and non-clastic rocks exercise	Get to know the differences between clastic and non-clastic rocks	
8		Eva	aluasi Tengah Sem	nester			30%
9	[C4,P4,A4] Students are able to understand about stratigraphy and the laws of stratigraphy	Introduction to sedimentary stratigraphy, the principle of stratigraphy [K9]: Introduction to the principle of stratigraphy.ppt	_	TM: 1x(3x50")	Discussion (the principle of stratigraphy);	Get to know the laws of stratigraphy	

10	[C4,P4,A4] Students are able to understand the differences in stratigraphic science (lithostratigraphy, chronostratigraphy, biostratigraphy)	Introduction to lithostratigraphy, chronostratigraphy, and biostratigraphy [K10]: Introduction to advanced stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (comprehensive knowledge in stratigraphy); Assignment-K10: lithostratigraphy, chronostratigraphy, and biostratigraphy exercises	the accuracy of explaining	5%
11	[C4,P4,A4] Students are able to analyse the correlation of rocks	The basic concept of sedimentary rocks correlations (understand datum/keybed) [K11]: rocks correlation.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of comparing and explaining	
12	[C4,P4,A4] Students are able to analyse the correlation of rocks (lithocorrelation, chronocorrelation, and biocorrelation)	Comprehension of the differences in lithocorrelation, chronocorrelation, and biocorrelation [K12]: lithocorrelation, chronocorrelation, and biocorrelation, and biocorrelation.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12: Stratigraphy and Correlation	the accuracy of explaining	5%

13	[C4,P4,A4] Students are able to read a regional stratigraphy and its use	The basic concept of regional stratigraphy reading [K13]:Regional geology map.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion Assignment -K13: Practice on simulating the flow in the earth with program language	the accuracy of explaining	10%
14	[C4,P4,A4] Students are able to understand the sequence stratigraphy	The concept of sequence stratigraphy [K14]: Introduction to Sequence Stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
15	[C4,P4,A4] Students are able to understand a stratigraphy, correlation, and sequence of rocks	Comprehensive understanding of sedimentary stratigraphy [K15]: Journal.ppt	Discussion	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion Assignment-K15: Presentation and resume about sedimentary stratigraphy	the accuracy of explaining	
16		En	d Semester Evalua	ation			30%

- 1. Dunbar, C.O and Rodgers, J (157), Principal Of Stratigraphy
- 2. Schoch, R.M, (1989), Stratigraphy: Principal and Methods
- 3. Martodjojo, S dan Djuhaeni, (1996), Sandi Stratigrafi Indonesia
- 4. Mc Lane, M., 1995, Sedimentology, Oxford University Press Inc., 423 hal.
- 5. Collinson, JD., Thompson, DB., 1982, Sedimentary Structures 2nd Ed., London Unwin Hyman, 207 hal.

Program Study	Geophysical Engineering Department
Course	Seismology
Cource Code	RF184309
Semester	III (Three)
Credit	3 (P:2,R:1) SKS
Lecturer	Firman Syaifuddin, S.Si., M.T.

Study materials	Wave, Physics		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;

		Ţ
	3.3	understanding the theoretical concept of statistics to define the process complexity of a particular natural phenomena;
	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	3.7	understanding the factual insights and technology application methods; codes and national/international standards as well as the regulations in force in his/her work area to carry out geophysical engineering technology work in depth;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.9	being able to recognize the difference between land and sea exploration field characteristics that can be affected into the quality of measurement data;

	4	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4	4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented, and poured in the form of scientific papers.
LO – Course	earthquake wave propagation. a earthquake, and analyze the med	Stude chani	phenomena related to earthquake vibrations and are able to explain the concept of ents are able to determine the location of the earthquake source, the type of the sm of the earthquake. Students can understand the principles and application of the udents can understand the basic concepts of seismology used in exploration.

Week	The Expected of	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weig
	Sub LO - Course				Learning	Indicators	ht
					Experience		(%)
1	2	3	4	5	6	7	8
1	[C3, P3,A3]	1. Introduction to	Introductory lectures,	TM: 1x(3x50")	Discussion;	Understanding what	"5%
	Understand what will	lecture:	lecture contract and			will be learned in	task"
	be learned in this	 Semester learning 	brainstorm, sharing		Make a	this lecture	
	lecture, understand	plans	opinion.		summary		
	the basic fundamental	 College contracts 				Able to explain the	
	of seismology.	• Scoring system				basic seismology	
		2. Review wave					
		course					
2	[C3, P3,A3]	Stress and strain,	Direct lecture,	TM: 1x(3x50")	Discussion;	Able to explain the	"5%
	Understand the		Discussion;			concepts of stress	task "
	concepts of stress and				Make a	and strain.	
	strain that form the				summary		
	basis of the						

3	mechanical wave equation. [C3, P3,A3] Understand wave equations and being	The seismic wave equation,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a	Able to explain the types of forces on continuous medium. Able to explain wave equations.	"5% task "
	able to derive general wave mechanics formulas,				summary	Able to derive the general formula pf mechanical wave.	
4	[C3, P3,A3] Knowing the concepts of travel times approached by the principle of wave	Ray theory: Travel times,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-01	Able to explain the concept of travel times approached by the principle of wave rays.	"5% task " 15% Quiz
5	rays. [C3, P3,A3] Able to do inversion of travel time data with the wave ray approach.	Ray theory: Inversion of travel time data,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to do inversion of travel time data with the wave ray approach.	"5% task "
6	[C3, P3,A3] Knowing the amplitude and phase which approached by the principle of wave light.	Ray theory:Amplitude and phase,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the amplitude and phase which approached by the principle of wave light.	"5% task "

7	[C3, P3,A3] Knowing the concept of reflection that us used in the field of seismology.	Reflection seismology,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the concept of reflection used in the field of seismology.	"5% task "
8	Mid Semester Eva	iluation (Formative Eva	aluation-Evaluation that i assessment that has b	•	e the learning pr	ocess based on the	40%
9	[C3, P3,A3] Knowing the concept of surface waves and normal modes.	Surface waves and normal modes,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the concept of surface waves and normal modes.	"5% task "
10	[C3, P3,A3] Knowing the concept of earthquakes and source theory.	Earthquakes and source theory	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the concepts of earthquake and source theory.	"5% task "
11	[C3, P3,A3] Knowing the concepts of earthquake prediction.	Earthquake prediction,	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the earthquake prediction.	"5% task "
12	[C3, P3,A3] Knowing the concept of earthquake instruments.	Earthquake Instruments	Direct lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-02	Able to explain the concept of earthquake instruments.	"5% task "

13	[C3, P3,A3]	noise, and	Direct lecture,	TM: 1x(3x50")	Discussion;	Able to explain the	"5%
	Knowing the concept	anisotropy	Discussion;			concept of noise and	task "
	of noise and				Make a	anisotropy.	
	anisotropy.				summary		
14	[C3, P3,A3]	Volcanic	Direct lecture,	TM: 1x(3x50")	Discussion;	Able to explain the	"5%
	Knowing the concept	Seismology	Discussion;			concept of volcanic	task "
	of volcanic				Make a	seismology.	
	seismology.				summary		
15	[C3, P3,A3]	Case study.	Group paper	TM: 1x(3x50")	Discussion;	Able to analysis	"5%
	Able to analysis		presentations;			seismology data.	task "
	seismology data.	Study literature	Discussion;		Make a	Being able to	
		from various source.			summary	present papers on	
						the result of	
						literature studies.	
						Able to conduct	
						scientific	
						discussions with a	
						question and answer	
						mechanism.	
16	Final Semeste	er Evaluation (Evaluation	on intended to find out the	e final achievement of	of student learnir	ng outcomes)	40%

- 1. Shearer, P. M., 2009, Introduction to Seismology, Cambridge University Press, Cambridge, UK.
- 2. Zobin, V. M., 2012, Introduction to Volcanic Seismology, Elsevier, London, UK.
- 3. Jens Havskov, Gerardo Alguacil (auth.)-Instrumentation in Earthquake Seismology-Springer International Publishing (2016)
- 4. Barbara Romanowicz, Adam Dziewonski-Seismology and Structure of the Earth_ Treatise on Geophysics-Elsevier (2009)
- 5. Agustin Udías-Principles of Seismology-Cambridge University Press (2000).
- 6. Thorne Lay, Terry C. Wallace-Modern Global Seismology, Vol. 58-Academic Press (1995
- 7. V. I. Keilis-Borok (auth.), V. I. Keilis-Borok, Edward A. Flinn (eds.)-Computational Seismology-Springer US (1995)

Program Study	Geophysical Engineering Department
Course	Digital Data Analysis
Cource Code	RF184410
Semester	4 (T:3, R:1) SKS
Credit	IV (Empat)
Lecturer	1. Dr. Ayi Syaeful Bahri, S.Si., M.T.
	2. Mariyanto, S.Si., M.T.

Study materials	Mathematics, Progamming, Domain Transformation							
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise					
(LO)		1.7	independently;					
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;					
		2.3	Able to study the implications of the development or implementation of technological science that applies the value of the humanities according to their expertise based on scientific rules, procedures and ethics in order to produce solutions, ideas, designs or art criticisms, compile scientific descriptions of the					

			results of their studies in the form of thesis or final project report , and upload it on the college page;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;
		3.9	Able to master the principles of quality assurance in general in geophysical engineering work;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
LO – Course	substances in it to support dat	a proces	ze the basic concepts of digital signal data in geophysics which includes all the sing and be able to apply to geophysical data processing, Able to be responsible for supervise and evaluate the completion of work assigned to workers under its

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning	Criteria and Indicators	Weight (%)
	Sub EO - Course	Subject			Experience	indicators	(70)
1	2	3	4	5	6	7	8
1	Students are able to explain the concept of signal analysis.	The bacis concepts of signal analysis, signals and system in geophysics, data terminology, information and analysis in geophysics.	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion	Liveliness of interact	-
2	Students are able to explain the various type of signals.	Signals classification: Analog signal Digital signal Odd function signal Even function signal Continuous signal Discrete signal Periodic signal Aperiodic signal	Direct Lecture 120 minute Discussion 30 minute	150 minute	Presentation, discussion, task	Task result	2,5%
3	Students are able to do periodic signal analysis in a fourier series.	Periodic signals, Fourier series	Direct Lecture 120 minute Discussion	150 minute	Presentation, discussion	Liveliness of interact	-

			30 minute				
4	Students are able to	Fourier analysis,	Direct Lecture	150 minute	Presentation,	Quiz result	5%
	do aperiodic signal	Aperiodic signal,	120 minute		discussion,		
	analysis using Fourier	Fourier integral.			quiz		
	integrals.		Discussion				
			30 minute				
5	Students are able to	Discrete fourier	Direct Lecture	150 minute	Presentation,	Task result	2,5%
	do discrete Fourier	data	120 minute		discussion,		
	data transformation	transformation.			task		
	manually.		Discussion				
			30 minute				
6	Students are able to	Algorithm in	Kuliah	150 minute	Presentation,	Liveliness of	-
	do fourier data	Fourier	120 menit		discussion	interact	
	transformation by	Transform, Fast					
	programming.	Fourier	Diskusi				
		Trasnform (FFT)	30 menit				
7	Students are able		Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand and apply		120 minute		discussion	interact	
	the Fourier						
	transforms on		Discussion				
	geophysical data.		30 minute				
8			Mid Semester Eval	uation			30%
9	Students are able to	Sampling	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand the	function, nyquist	120 minute		discussion	interact	
	relationship between	theorem, nyquist					
	interval sampling	frequency and cut	Discussion				
	with nyquist	off, aliasing	30 minute				
	frequency and cut off.						

10	Students are able to	The physical	Direct Lecture	150 minute	Presentation,	Task result	2,5%
	convolution data	meaning of	120 minute		discussion,		
	manually.	convolution,			task		
		convolution	Discussion				
		integral,	30 minute				
		convolution in the					
		time and					
		frequency					
		domains.					
11	Students are able to	Convolution	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	convolution data by	properties,	120 minute		discussion	interact	
	programming.	convolution					
		programming.	Discussion				
			30 minute				
12	Students are able to	Integral	Direct Lecture	150 minute	Presentation,	Quiz result	5%
	correlate data	correlation, cross	120 minute		discussion,		
	manually.	correlation,			quiz		
		autocorrelation.	Discussion				
			30 minute				
13	Students are able to	correlation	Direct Lecture	150 minute	Presentation,	Task result	2,5%
	convolution data by	characteristics,	120 minute		discussion,		
	programming.	correlation			task		
		programming.	Discussion				
			30 minute				
14	Students are able to	Filter	Direct Lecture	150 minute	Presentation,	Presentation and	20%
	understand about data	classification,	120 minute		discussion,	demo result	
	filters.	linear filter,			demo		
		nonlinear filter,	Discussion				
		low pass filter,	30 minute				

		band pass filter,					
		high pass filter					
15	Students are able to	Correlation for	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	filter data.	suppressing noise	120 minute		discussion	interact	
		(match filter),					
		programming the	Discussion				
		data filter.	30 minute				
16			End of Semester Eval	uation			30%

- 1. Clearbout, J.F.; Fundamentals of Geophysical Data Processing With Applications to Petroleum Prospecting. Mc. Graw-Hill Book Co., New York, 1976.
- 2. Sheriff, R.E., and Geldart, L.P.; Exploration Seismology Vol.2: Data Processing and Interpretation. Cambridge University Press, 1983.
- 3. Oram Brigham B.: The Fast Fourier Transform and It's Applications. Prentice-Hall Inc., 1988.

Program Study	Geophysical Engineering
Course	Mineral Deposits
Code	RF184412
Semester	IV (Four)
Credit	3 (T:3) SKS
Lecturer	Dr. Ir. Amien Widodo, M.S.

Study Materials	Geology, Mechanics, M	inerals	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;

	2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;
	3.10	understanding the concept and principle of environmental conservation in general from the activities of geophysical engineering;
	3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and

LO- Course

[C4,P4,A4] Students are able to understand various explorable and exploitable natural resources related to mineral deposits for economic purpose. Understand types of mineral deposits which has economic value and knowing its whereabouts that related to tectonic condition of a geology environment. Understand the process of mineral deposits formed in a certain zones and prediction of its whereabouts in the field (mineral deposits genesis).

Week	The Expected of Sub LO-Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience*	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand structural geology and Earth's constituent components(Earth Structure)	Introduction to Earth Structure [K1]: Earth Structure.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (Comprehension of Earth's components from the core to the crust and its relation to structural geology)	the accuracy of explaining	
2	[C4,P4,A4] Students are able to understand crust deformations (Divergent, Convergent, and Transform)	Introduction to Crust Deformation [K2]: Tectonic Deformation Part 1.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (types of tectonic crust movement); Assignment-K2: Resume on divergent, convergent, and transform process	Get to know of plate movements	

			•		1		
3	[C4,P4,A4] Students are able to explain the difference of Brittle and Ductile	Introduction to Brittle and Ductile on plate crust [K3]: Brittle and Ductile.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (Brittle and Ductile); Assignment-K3:Latihan soal Brittle and Ductile Exercises, the difference of divergent, convergent, and transform	Get to know the difference of Brittle and Ductile and the outcome structures from both	
4	[C4,P4,A4] Students are able to analyse the kinematics and dynamics of plate movement	The concept of kinematics and dynamics in structural geology [K4]: Force Kinematics.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (Dynamics of Tectonic Plate); Assignment-K4: Resume of Plate Movement Kinematics	Get to know the various types of plate movement from the dynamics of its kinematic force	
5	[C4,P4,A4] Students are able to understand carbonate sedimentary rock	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate sedimentary rock.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (carbonate sedimentary rock); Quiz-K5: Clastic Rock and Carbonate Rocks (components)	Get to know of carbonate rocks component	

6	[C4,P4,A4] Students are able to understand the genesis of carbonate rocks (differences in clastic rocks genesis)	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate rocks genesis.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (plate dynamics in geophysics); Assignment-K6: carbonate rocks genesis exercises	Get to know the genesis of carbonate rocks	
7	[C4,P4,A4] Students are able to understand the genesis of sedimentary rocks, the components, textures, structures, minerals, as well as explain the depositional environment and its classification	The concept of sedimentary stratigraphy on clastic and non-clastic rocks [K7]: Resume of sedimentary stratigraphy on clastic and non-clastic rocks.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (clastic and non-clastic rocks); Assignment-K7: differences between clastic and non-clastic rocks exercise	Get to know the differences between clastic and non-clastic rocks	
8			Mid Semester E	Evaluation			30%
9	[C4,P4,A4] Students are able to understand about stratigraphy and the laws of stratigraphy	Introduction to sedimentary stratigraphy, the principle of stratigraphy [K9]: Introduction to the principle of stratigraphy.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (the principle of stratigraphy);	Get to know the laws of stratigraphy	

10	[C4,P4,A4] Students are able to understand the differences in stratigraphic science (lithostratigraphy, chronostratigraphy, biostratigraphy)	Introduction to lithostratigraphy, chronostratigraphy, and biostratigraphy [K10]: Introduction to advanced stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion (comprehensive knowledge in stratigraphy); Assignment-K10: lithostratigraphy, chronostratigraphy, and biostratigraphy exercises	the accuracy of explaining	5%
11	[C4,P4,A4] Students are able to analyse the correlation of rocks	The basic concept of sedimentary rocks correlations (understand datum/keybed) [K11]: rocks correlation.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of comparing and explaining	
12	[C4,P4,A4] Students are able to analyse the correlation of rocks (lithocorrelation, chronocorrelation, and biocorrelation)	Comprehension of the differences in lithocorrelation, chronocorrelation, and biocorrelation [K12]: lithocorrelation, chronocorrelation, and biocorrelation, pt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12: Stratigraphy and Correlation	the accuracy of explaining	5%
13	[C4,P4,A4] Students are able to read a regional stratigraphy and its use	The basic concept of regional stratigraphy reading	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion Assignment -K13: Practice on simulating the	the accuracy of explaining	10%

		[K13] :Regional geology map.ppt			flow in the earth with program language			
14	[C4,P4,A4] Students are able to understand the sequence stratigraphy	The concept of sequence stratigraphy [K14]: Introduction to Sequence Stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining		
15	[C4,P4,A4] Students are able to understand a stratigraphy, correlation, and sequence of rocks	Comprehensive understanding of sedimentary stratigraphy [K15] : Journal.ppt	Discussion	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Discussion Assignment-K15: Presentation and resume about sedimentary stratigraphy	the accuracy of explaining		
16	End Semester Evaluation							

- 1. Pirajno, F, (1990), Hydothermal Mineral Deposits, Springer Verlag.
- 2. Pirajno, F, 2009. Hydrothermal Processes and Mineral Systems. Springer Verlag, 1250 p.
- 3. Roberts, RG & Sheahan, PA, (1988), Ore Deposit Models, Geological Association of Canada.
- 4. Guilbert, JM & Park, Jr. CF., (1986) The Geology of Ore Deposits, Freeman, NY.

Program Study	Geophysical Engineering Department			
Course	Geostatistics			
Course Code	RF184413			
Semester	IV (Four)			
Credit	3 SKS			
Lecturer	1. Anik Hilyah, S.Si., M.T.			
	2. M.Singgih Purwanto, S.Si., M.T.			

Study Materials	Basic statistical theory, conventional and unconventional geostatistical methods, analysis and modeling of variograms, variogram shapes, dispersion variances, estimation variances, krigging, reserve estimation, reservoir characterization and practicum using geostatistical software.				
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise		
(LO)			independently;		
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the		
			context of development or implementation of science and technology that		
			concerns and implements the value of humanities in accordance with their area of		
	expertise;				

		2.7	being able to take responsibility for the achievement of group work and supervise			
			and evaluate the work completion assigned to the worker under his or her			
			responsibility;			
		2.8	being able to conduct self-evaluation process to work group under his or her			
			responsibility, and able to manage learning independently;			
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering			
			principles, and engineering design methods required to analyse and design			
			system, process, product, or component in geophysics engineering in deep;			
		3.3	understanding the theoretical concept of statistics to define the process			
			complexity of a particular natural phenomena;			
		3.5	understanding the concepts, principles and techniques of system design, process			
			or application component of geophysical engineering in procedurally starting			
			from data retrieval, processing, interpretation and modeling to solve the problems			
			of geophysical engineering in depth;			
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering			
			principles into procedures, processes, systems or methodologies of geophysical			
			engineering, to create or modify models in solving complex engineering problems			
			in the fields of environment, settlement, marine and energy with the concept of			
			sustainable development;			
LO - Course	[C4,P3,A3] Students are able	4,P3,A3] Students are able to estimate the volume deviation and reservoir characterization using the geostatistical				
	method.					
LO - Course		e to esti	sustainable development;			

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Able to know the	 Introduction to 	Direct Lecture and	150 minute	Discussion	Students are able	
	geostatistical	geostatistics	Discussion			to know the	
	application.					application of	

		 Geostatistical 				geostatistics in	
		applications in				data processing	
		mining and				and	
		reservoir				interpretation.	
		characterizatio					
		n					
		Univariate					
		Statistics					
2	Able to know	Polygon	Direct Lecture and	150 minute	Discussion	Students are able	
	conventional backup	Method	Discussion			to apply various	
	calculation methods.	Nearest point				conventional	
		method				backup	
		 Block method 				calculation	
						methods.	
3	Able to understand	Normal	Direct Lecture and	150 minute	Discussion	Students are able	
	geostatistical reserve	distribution	Discussion			to apply various	
	calculation methods.	Data				geostatistical	
		stationarity				reserve	
						calculation	
						methods.	
4	Quiz 1 (Formative Ev	aluation-Evaluation	which is intended to improv	e the learning proce	ess based on the a	assessment that has	15%
			been done)				
5	Able to understand	■ Sill, nuggets	Direct Lecture and	150 minute	Presentation,	Students are able	10%
	semivariograms.	and range	Discussion		discussion,	to make	
		Theoretical			task	semivariograms,	
		Variogram				theoretical and	
		Experimental				experimental	
		variogram				variograms.	

6	Able to understand	Variogram	Direct Lecture and	150 minute	Presentation,	Students are able	
	the variogram model.	behavior near	Discussion		discussion	to analyze the	
		the starting				variogram shape.	
		point				,	
		Variogram					
		model					
7	Able to understand	Pengaruh	Direct Lecture and	150 minute	Presentation,	Students are able	20%
,	geometry support.	support	Discussion Discussion	130 minute	discussion,	to determine the	2070
	geometry support.		Discussion		Practicum		
		geometri			Fracticum	geometry support	
		 Anisotropi 				according to the	
						data.	
8	Mid Semester Evalua	ation (Formative Eva	luation-Evaluation which is		ve the learning pr	ocess based on the	20%
			assessment that has bee				
9	Able to understand	Calculation of	Direct Lecture and	150 minute	Presentation,	Students are able	
	extension variance.	variance	Discussion		discussion	to apply	
		extension				extension	
		Application				variance.	
		variance					
		extension					
10	Able to understand	 Calculation of 	Direct Lecture and	150 minute	Presentation,	Students are able	
	the estimated	estimated	Discussion		discussion	to apply the	
	variance.	variance				estimated	
		 Application of 				variance.	
		estimation					
		variance					
11	Able to understand	Calculation of	Direct Lecture and	150 minute	Presentation,	Students are able	
11	Kriging variance.	Kriging	Discussion		discussion	to calculate the	
	ixiging variance.	variance	Discussion		discussion	Kriging variance.	
,		variance				mignig variance.	

		Kriging variance application					
12	Able to understand reserve estimates.	 Calculation of estimated reserves 	Direct Lecture and Discussion	150 minute	Presentation, discussion	Students are able to calculate reserve estimates.	
13	improve the learning	process based on the elajaran berdasarkan	on which is intended to assessment that has been assessment yang telah	150 minute			15%
14	Able to understand geostatistical case studies for reserve calculations.	Geostatistical case studies on mining.	Direct Lecture and Discussion	150 minute	Presentation, discussion, task	Students are able to solve geostatistical problems in mining.	
15	Able to understand geostatistical case studies for reservoir characterization	Geostatistical case study on reservoirs	Direct Lecture and Discussion	150 minute	Presentation, discussion	Students are able to solve geostatistical problems in reservoir characterization.	
16	End of Semester Evalu	nation (Formative Eva	aluation-Evaluation which i assessment that has bee	-	ove the learning p	rocess based on the	20%

- 1. David, M., "Geostatistical Ore Reserve Estimation, Developments in Geomathematics 2", Elsevier Scientific Publishing Co., Amsterdam, Oxford-New York, 1980 Matheron, G., "Principles of Geostatistics", Economic Geology vol.58, 1963
- 2. Annels, Alwyn E., "Mineral Deposit Evaluation", A practical approach, Chapman dan Hall, London, 1991.
- 3. Wellmer, Friedrich, Statistical Evaluations in Exploration for Mineral Deposits, Springer, Germany, 1998
- 4. Journel, A.G. dan C. Huijbregts, "Mining Geostatistics", Academic Press, 1978
- 5. Rendu, J.M., "An Introduction to Geostatistical Methods of Mineral Evaluation", Monograph of the South African Inst. Min. Metall., 1978

Program Study	Geophysical Engineering Department
Course	Geodynamics
Course Code	RF184414
Semester	IV (Four)
Credit	3 (T:3) SKS
Lecturer	 Wien Lestari, S.T., M.T. Nita Aryanti, S.T., M.Eng.

Study Materials	Geology, Mechanics		
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;
		3.3	understanding the theoretical concept of statistics to define the process complexity of a particular natural phenomena;
		3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
		3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;

Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
	4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.

LO - Course

[C4,P4,A4] Students are able to apply physics law into plate dynamics which includes the process and the products among others are earthquake, landslide, mountain formation, and the change in coastal line. Students are able to understand the basics of Brittle and Ductile from lithosphere, able to explain the relation between the events and appearance which is revealed in the field, also able to understand the geophysics calculations on the basis of continental or oceanic crust emergence and Earth dynamics.

Wee k	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand the basics of plate crust which includes the brittle (rigid) and ductile (non-rigid)	Introduction to geodynamics on the basics of the Earth's plate crust consists of the rigid part and non-rigid part along with its movement [K1]: Introduction to Geodynamics of Plate Crust.ppt		TM: 1x(3x50")	Discussion (Review on the basics of plate crust and its movement);	The accuracy of explaining	5%
2	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from	Introduction to geodynamics for geophysics, plate tectonic, and mathematical	Introductory Lecture, brainstorming	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics);	Get to know the general formula of plate dynamics	10%

	the concept of continental drift and seafloor spreading.	equation for plate dynamics [K9] : Introduction to geodynamics for geophysics.ppt			Assignment-K10: Plate dynamics and isostasy exercises		
3	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, brainstorming	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	10%
4	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	Introductory Lecture, brainstorming	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	10%

5	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	10%
6	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	10%

7	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt		TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	10%
8			Mid Semester	Evaluation			30%
9	[C4,P4,A4] Students are able to understand the basics of geophysical calculations from plate tectonics started from the concept of continental drift and seafloor spreading.	Introduction to geodynamics for geophysics, plate tectonic, and mathematical equation for plate dynamics [K9]: Introduction to geodynamics for geophysics.ppt		TM: 1x(3x50")	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy exercises	Get to know the general formula of plate dynamics	

10	[C4,P4,A4] Students are able to understand continental dynamics and deformation between plates with geophysics (gravity and isostasy)	Introduction to deformation, the basic concept of gravity and plate isostasy [K10]: Introduction to gravity and isostasy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion (plate dynamics in geophysics); Assignment-K10: Plate dynamics and isostasy practice	the accuracy of explaining	5%
11	[C4,P4,A4] Students are able to analyse stress and strain	The concept and measurement of stress and strain [K11]: deformation, stress and strain.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining and comparing	
12	[C4,P4,A4] Students are able to understand the basic rheology	The basic concept and measurement of rheology [K12]: Introduction to rheology.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12 :stress and strain	the accuracy of explaining	5%

13	[C4,P4,A4] Students are able to understand the concept of hotspot formation/volcanism and its relation to the plate movement, tectonic plume, fluid mechanics	The basic concept of fluid mechanics and volcanism [K13]: Introduction to fluid mechanics and volcanism.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion Assignment-K13: Practice in making a language program for flow simulation in the Earth	the accuracy of explaining	10%
14	[C4,P4,A4] Students are able to understand the principle of heat transfer occurrence/ whole mantle convection	Heat transfer concept [K14]: Introduction to heat transfer.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
15	[C4,P4,A4] Students are able to understand the study case of Geodynamics through Geophysics	Study case comprehension in geodynamics through geophysics [K15] : Journal.ppt	Discussion;	TM: 1x(3x50") [BT+BM:2x(4 x60")]	Discussion Assignment-K15 :Presentation and resume study geodynamics in geophysics	the accuracy of explaining	
16			End Semester	Evaluation			30%

- 1. Thomson and Turk, 2007, Physical Geology, Sounders Golden series
- 2. Wilson, T. et al., "Physics and Geology", McGraw-Hill, 1975
- 3. Dana's Manual of Mineralogy, John Wiley and Sons, Inc., New York
- 4. Turcotte, D.L. and Schubert, G., 1982, Geodynamics : Applications of Continuum physics to geological problems, John Willey & Sons. Inc
- 5. Blatt, H., Tracy, R.J., Owens, B.R., 2006, Petrology: Igneous, Sedimentary, and Metamorphic, 3 rd

Program Study	Geophysical Engineering Department			
Course	Rock Mechanics			
Cource Code	RF184415			
Semester	IV (Four)			
Credit	3 (T:2,P:1) SKS			
Lecturer	1. Dr.Dwa Desa Warnana, M.Si.			
	2. Wien Lestari, S.T., M.T.			

Study materials	Geology, Mechanics

Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
		3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;

		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
LO – Course	[C4,P4,A4] Students can explain the concept and solve the basic problems of rock mechanics systems in an integrated and comprehensive for engineering applications.		

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students	Rock and rock	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Accuracy of	5%
	are able to understand	mechanics, scope	contract and			explanation	
	the basics of rock and	and problems	brainstorming;				
	rock mechanics.						
2	[C4,P4,A4] Students	Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	stress and strain	contract and	[BT+BM:2x(4x6	(plate	explanation	
	stress and strain	analysis	brainstorming;	0")]	dynamics in		
	analysis.				geophysics);		
					: Exercises		
3	[C4,P4,A4] Students	Strain analysis	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand		contract and	[BT+BM:2x(4x6	Task-K10:	explanation	
	the stress analysis in		brainstorming;	0")]	Exercises		
	fields, Mohr circle						

4	[C4,P4,A4] Students	Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	strain analysis	contract and	[BT+BM:2x(4x6	Task-K10:	explanation	
	strain analysis.		brainstorming;	0")]	Exercises		
5	[C4,P4,A4] Students	Physical and	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	mechanical	contract and	[BT+BM:2x(4x6	Task-K10:	explanation	1070
	the physical and	properties of	brainstorming;	0")]	Exercises		
	mechanical properties	rocks	,	, ,,			
	of rocks in the						
	laboratory.						
6	[C4,P4,A4] Students	Determination of	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	mechanical	contract and	[BT+BM:2x(4x6	Task-K10:	explanation	
	the determination of	properties in situ.	brainstorming;	0")]	Exercises		
	mechanical properties	Rock Behavior;		,,			
	in situ. Rock	Elastic,					
	Behavior; Elastic,	elastoplastic, rock					
	elastoplastic, rock	creep, rock					
	creep, rock	relaxation, stress					
	relaxation, stress and	and strain					
	strain relations for	relations for					
	linear and isotropic	linear and					
	elastic behavior.	isotropic elastic					
		behavior.					
7	[C4,P4,A4] Students	"Failure" criteria	Introductory Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	for rocks; Mohr	contract and	[BT+BM:2x(4x6	Task-K10:	explanation	
	the basics of rock	Theory, Mohr-	brainstorming;	0")]	Exercises		
	"Failure" Criteria;	Coulomb Criteria,					
	Mohr Theory, Mohr-	Criteria for					
	Coulomb Criteria,						

	Criteria for maximum	maximum tensile					
	tensile stress.	stress.					
8			Mid Semester Evalu	ation			30%
9	[C4,P4,A4] Students are able to understand the maximum shear stress criteria.	Maximum shear stress criteria.	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (plate dynamics in geophysics);	Get to know the general formula of plate dynamics	
10	[C4,P4,A4] Students are able to understand in situ stress measurements in rock masses;	Measurement of in situ stresses in rock mass;	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion (plate dynamics in geophysics); Task-K10: Exercises about plate dynamics and isostation	Accuracy of explanation	5%
11	[C4,P4,A4] Students are able to analyze the Rosette deformation Method,	Concept and measurement of Rosette deformation method, [K11]: deformation, stress and strain.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	The accuracy of comparing and explaining	
12	[C4,P4,A4] Students are able to understand the Flat Jack method,	Basic concepts and rheological calculations	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12 :stress and strain	Accuracy of explanation	5%

	the over coring	[K12]:					
	method,	Introduction to					
		rheology.ppt					
13	[C4,P4,A4] Students	Basic concepts of	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	10%
	are able to understand	fluid mechanics	Discussion, Video	[BT+BM:2x(4x6	Task-K13:	explanation	
	Hydraulic fracturing.	and volcanism		0")]	Exercises		
		[K13]:			making the		
		Introduction to			script of flow		
		fluid mechanics			simulation in		
		and volcanism.			the earth		
		ppt					
14	[C4,P4,A4] Students	Technical	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy of	
	are able to understand	classification of	Discussion;			explanation	
	the technical	rock masses;					
	classification of rock						
	masses;						
15	[C4,P4,A4] Students	Understanding	Discussion;	TM: 1x(3x50")	Discussion	Accuracy of	
	are able to understand	important factors		[BT+BM:2x(4x6	Task-K15:	explanation	
	the important factors	in rock		0")]	Presentation		
	in rock classification,	classification,			and resume		
	rock mass properties,	rock mass			of		
	rock mass	properties, rock			geodynamic		
	classification.	mass			studies in		
		classification			geophysics		
16			End Semester Evalu	ation			30%

1.Telford, W., Geldart, L.P., and Sheriff, R. E. (1976). Applied Geophysics. Cambridge Univ Press, Cambridge.

- 2. Goodman, R. E. (1980). Introduction to Rock Mechanics. J. Wiley and Sons, New York
- 3. Wiley, D. C. and Mah, C. W. (1980). Rock Slope Engineering
- 4. Derski, W., Izbicki, R., Kisiel, I., and Mroz, Z. (1989). Rock and Soil Mechanics. Elsevier
- 5. Jurnal Geofisika, Sedimentary, and Metamorphic, 3 rd

Program Study	Geophysical Engineering Department				
Course	Seoelectrical Exploration				
Cource Code	RF184516				
Semester	V (Five)				

Credit	4 (T:2,P:2) SKS		
Lecturer	1. Dr.Dwa Desa Warnana, S.Si., M.Si.		
	2. Wien Lestari, S.T.,M.T.		

Study materials	Electricity, Physics		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;
		3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;

Specific Skills	3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general; being able to apply the principles of mathematics, science and engineering
	7.1	principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and

	4.12	mampu mengkritisi prosedur operasional lengkap dalam penyelesaian masalah teknologi rekayasa geofisika yang telah dan/atau sedang diterapkan, dan dituangkan dalam bentuk kertas kerja ilmiah.			
LO – Course	[C4,P3,A3] Students are able to apply geophysical exploration methods, combine geophysical and geological data to				
	produce accurate interpretations alaso have skills in geological and geophysical field surveys.				

Week	The Expected of Sub	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4]	Introduction to	Introductory Lecture,	TM: 1x(4x50")	Discussion	Get to know	5%
	[Conceptual	the geoelectric	contract and		Task-K1:	geoelectrical	
	knowledge, Analyze]	method, the	brainstorming;		Resume of the	applications in	
	Students are able to	development of			development	general;	
	understand the	geoelectric			of the		
	geoelectric method and	methods and			Geoelectric		
	its development	general			method		
		applications					
		[K1]:					
		Introduction to					
		the Geoelectric					
		Method.ppt					

2	[C4,P4,A4][Conceptual	Basic concepts	Direct Lecture,	TM: 1x(4x50");	Discussion	Accuracy of	
	knowledge, Analyze]:	and principles	Discussion;			explanation	
	Able to explain the	of the					
	theoretical concepts of	Geoelectric					
	geoelectric methods and	Method					
	relation to the equation						
	electric waves that						
	spread in the earth, the						
	nature of electricity						
	material and rock						
3	[C4,P4,A4][Conceptual	Electrode	Direct Lecture,	TM: 1x(4x50");	Discussion	The accuracy	
	knowledge, Analyze]:	configuration	Discussion;	[BT+BM:2x(4x6		of comparing	
	able to understand the	and application		0")]		and explaining	
	concepts and principles						
	of electrode						
	configuration and the						
	process of acquisition						
	(data collection) in the						
	Geoelectric Method						
4	[C4,P4,A4][Conceptual	Concepts, 1D	Direct Lecture,	[TM: 1x(4x50")]	Quiz-K4:	Accuracy of	5%
	knowledge, Analyze]:	and 2D	Discussion;		Basic	explanation	
	able to understand the	modeling			geoelectric		
	concepts, modeling	principles			concepts, data		
	principles to solve				processing		
	geophysical				stages and		
	engineering problems;				general		
	1D and 2D modeling				modeling		

5	[C4,P4,A4][Conceptual knowledge, Analyze]: Able to explain the theoretical concepts of resistivity methods, mastering data collection techniques	Concepts, principles and acquisition of resistivity methods	Direct Lecture, Discussion; audio video, case study	[TM: 1x(4x50")]	Discussion	Understand the principle of resistivity data acquisition	
6	(acquisition) [C4,P4,A4][Procedural knowledge, Analyze]: Able to choose resources and utilize data design and analysis resistivity method based on information and computational technology appropriate in resistivity method data processing activities;	1D and 2D resistivity data acquisition	Direct Lecture, Team discussion, Practicum	[TM: 1x(4x50")]	Direct Lecture, Team discussion, Field Practicum	Understand how resistivity tools work	
7	[C4,P4,A4][Procedural knowledge, Analyze]: Able to improve the quality of resistivity data through analysis, interpretation of data following the procedures and standards of	1D and 2D resistivity data processing	Direct Lecture, Team discussion, Practicum	[TM: 1x(4x50")] [BT+BM:2x(4x6 0")]	Discussion Task-K7: 1. Understand resistivity data processing software 2. Processing 1D and 2D resistivity data	Able to apply software in 1D and 2D resistivity data and analyze the results of data processing.	10%

	geophysical exploration activities by taking into the geological rules and exploration objectives; recognize differences in the characteristics of terrestrial and marine exploration fields that						
	can affect the quality of						
	measurement data;						
8			Mid Semester Evalu	ation			30%
9	[C4,P4,A4][Procedural knowledge, Analyze]: mastering the concepts, principles and techniques of 1D and 2D modeling in the resistivity method	The concept of 1D and 2D resistivity data modeling principles	Direct Lecture, Class discussion, Practicum	[TM: 1x(4x50")] [BT+BM:2x(4x6 0")]	Discussion and Practicum Task K-9; 1D and 2D modeling and interpretation	Able to apply modeling data in resistivity	20%
10	[C4,P4,A4][Conceptual knowledge, Analyze]: Able to explain the theoretical concepts of the Self Potential method, mastering data collection techniques (acquisition)	The concept of the principle of self potential method	Direct Lecture, Class discussion,	[TM: 1x(4x50")]	Discussion	Accuracy of explanation	
11	[C4,P4,A4][Procedural knowledge, Analyze]:	Acquisition data of self-potential	Direct Lecture, Team discussion, Practicum	[TM: 1x(4x50")]	Team discussion and Practicum	Able to understand the function of	

recoff de to-	ble to choose esources and make use of the data potential esign and analysis cols based on aformation technology and computation that are appropriate in the elf Potential method of data processing ectivities;	methods, introduction of tools and software				tools and software used in processing Self-Potential data	
kn Al qu da int fo pr sta ge ac the ex ree the ter	C4,P4,A4][Procedural nowledge, Analyze]: able to improve the uality of Self Potential ata through analysis, aterpretation of data ollowing the rocedures and randards of eophysical exploration activities by taking into the geological rules and exploration objectives; ecognize differences in the characteristics of experience in the characteristics of exploration fields that	Processing and modeling of Self Potential data	Direct Lecture, Team discussion, Practicum	[TM: 1x(4x50")] [BT+BM:2x(4x6 0")]	Team discussion and Practicum: Self Potential data processing	Understand how to process data and improve the quality of Self Potential data	

		1	T	_	1		1
	can affect the quality of						
	measurement data;						
13	[C4,P4,A4][Procedural	Acquisition	Direct Lecture, Team	[TM: 1x(4x50")]	Team	Able to	
	knowledge, Analyze]:	data of Induced	discussion, Practicum	[BT+BM:2x(4x6)]	discussion and	understand the	
	Able to choose	Polarization		0")]	Practicum	function of	
	resources and utilize	method,				tools and	
	data design and analysis	introduction of				software used	
	tools based on	tools and				in data	
	information and	software				processing	
	computational					Induced	
	technology based on the					Polarization	
	Induced Polarization						
	method;						
14	[C4,P4,A4][Procedural	Induced	Direct Lecture, Team	[TM: 1x(4x50")]	Team	Understand	
	knowledge, Analyze]:	Polarization	discussion, Practicum	[BT+BM:2x(4x6)]	discussion and	how to process	
	Able to improve the	data processing		0")]	Practicum:	data and	
	quality of Induced	and modeling			Induced	improve the	
	Polarization data				Polarization	quality of	
	through analysis,				data	Induced	
	interpretation of data				processing	Polarization	
	following the					data	
	procedures and						
	standards of						
	geophysical exploration						
	activities by taking into						
	the principles of						
	geology and exploration						
	objectives;						

15	[C4,P4,A4][Procedural	The conceptual	Direct Lecture, Team	[TM: 1x(4x50")]	Discussion and	Modeling data	
	knowledge, Analyze]:	principles of	discussion, Practicum	[BT+BM:2x(4x6)]	Practicum	in Self	
	mastering the concepts,	Self Potential		0")]	Task K-15 ;	Potential and	
	principles and modeling	and Induced			1D and 2D	Induced	
	techniques of Self	Polarization			modeling and	Polarization	
	Potential and Induced	data modeling			interpretation		
	Polarization methods						
16	End Semester Evaluation						

- 1. Telford, WM; Geldart, L.P; Sheriff, RE, 1998, Applied Geophysics, Cambridge Univ Press, Cambridge.
- 2. Zhdanov, M. S., Keller, G. V., The Geoelectrical Methods in Geophysical Exploration, Elsevier, 1994
- 3. Jurnal Geofisika

Program Study	Geophysical Engineering Department
Course	Seismic Exploration
Cource Code	RF184517
Semester	V (Five)
Credit	4 (T:3, P:1) SKS
Lecturer	Firman Syaifuddin, S.Si., M.T.

Study materials	Wave, Geology		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
General Skills		2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
2.		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to

		analyse and design system, process, product, or component in geophysics engineering in deep;
	3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
	3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
	3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
	3.9	mastering the principles of quality assurance in general in geophysics engineering work;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.11	mastering factual knowledge of current principles and issues in economic, socio-cultural and ecological issues in general that have an influence on the field of geophysics engineering;

•	1	
	3.14	mastering general concepts, principles, and techniques of effective communication orally and in writing for specific purposes in general; and
	3.15	mastering factual knowledge about the development of cutting-edge technology and advanced materials in the field of geophysical engineering in deep
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.3	being able to conduct research that includes identification, formulation, and analysis of geophysical engineering problems;
	4.4	being able to formulate alternative solutions to solve complex geophysical engineering problems by considering economic, health, public safety, cultural, social and environmental factors;
	4.5	being able to design systems, processes, and components with an analytical approach and consider technical standards, aspects of performance, reliability, ease of application, sustainability and pay attention to economic, health and public safety, cultural, social and environmental factors;

		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;				
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;				
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;				
LO – Course	have knowledge of "seismic exploration"	erstand the basic concepts of physics related to seismic wave propagation, Students must eploration", history, development and technology and terminology, students can understand ection methods, students have an understanding of data processing techniques 2D seismic					

Week	The Expected of	Learning Subject	Learning	Time	Student's	Criteria and	Weight
	Sub LO - Course		Methods	Estimation	Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4, P3,A3]	"1. Introduction to	Introductory	TM:	Discussion;	Understanding	"5%
	[Conceptual	Lecture:	Lecture, contract	1x(3x50")		what will be	Task"
	knowledge, Analyze]:	 Semester Learning 	and		Make a	learned in this	
		Plans	brainstorming;		summary	course	
	Able to understand	 College Contracts 				• Understanding the	
	the history of	 Scoring system 				history of	
	technological					technological	

	development of seismic methods in exploration activities,	Introduction to Lecture The history of seismic exploration "Main literature - chapter 1				development of seismic methods in exploration activities	
2	[C3, P3,A3] Knowing the basic concepts of seismic wave mechanism and seismic wave propagation. Able to explain the wave equation.	"a) Stress and strain b) The seismic wave equation c) Basic wave propagation" Supporting literature 1 - chapters 2 & 3 Supporting literature 2 - chapter 2 Practicum Module-01 "	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	 Knowing the basic concepts of seismic wave mechanism Knowing the basic concepts of seismic wave propagation, Able to explain the wave equation. 	"5% Task"
3	[C4, P3,A3] Understanding the concept of ray theory, Understanding the concept of time of wave propagation, Able to reduce Snell's law equation in the boundary line,	"a) Ray theory & Travel times b) Snell's law & Asymptotic ray theory c) Rays at an interface & Boundary conditions d) Continuity of the ray equations "Supporting literature 1 - chapter 4	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	 Understanding the concept of ray theory, Understanding the concept of the time of wave propagation, Being able to reduce Snell's law equation in the boundary line and know the concepts 	"5% Task"

		Supporting literature 2 - chapters 5 & 6 Practicum Module-02 "				of reflection and transmission of seismic waves,	
4	[C3, P3,A3] Knowing the concept of reflection and seismic wave transmission, Knowing the concept of acoustic wave propagation in Isotropic and Anisotropic media	e)Reflection/transmissio n coefficients & Free surface reflection coefficients f) Fluid—solid reflection/transmission coefficients g) Interface polarization conversions h) Linearized coefficients & Geometrical Green dyadic with interfaces " "Supporting literature 1 - chapter 4 Supporting literature 2 - chapters 5 & 6	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-01	Knowing the concept of acoustic wave propagation in Isotropic and Anisotropic media	"5% Task" 15% Quiz
5	[C4, P3,A3] Understanding the concept of seismic wave geometry both reflection and	Practicum Module-02 " "Seismic wave geometry • Reflection path • Refraction path • Vertical velocity gradient	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Understanding the concept of seismic wave geometry both reflection and refraction,	"5% Task"

	refraction, Understanding the vertical velocity gradient phenomenon.	"Main literature - chapters 4, 5 & 6 Practicum Module-03"				Understanding the vertical velocity gradient phenomenon.	
6	[C4, P3,A3] Understanding the concept of seismic wave velocity theoretically and be able to experiment with seismic wave velocity data, able to distinguish the types of seismic events and their characteristics.	 Seismic wave velocity Seismic sedimentary rock models Speed data experimentation Application of the concept of speed Speed measurement Characteristics of seismic events Reflection Events other than reflection Resolution Attenuation "Main literature - chapters 4, 5 & 6 Practicum Module-03 " 	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Understanding the concept of seismic wave velocity theoretically and be able to experiment with seismic wave velocity data Being able to distinguish the types of seismic events and their characteristics.	"5% Task"
7	[C3, P3,A3] Understanding the basic concepts of the seismic refraction	 The basic concept of the seismic refraction method Survey design and measurement of 	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Understanding the basic concepts of the seismic refraction method.	"5% Task"

	method. Able to make refraction seismic survey design, Able to do refraction seismic data processing, able to interpret refraction seismic data and make subsurface modeling based on refraction seismic data.	seismic refraction methods Refraction seismic data processing Interpretation and modeling of seismic refraction Geological interpretation of refraction seismic data "Main literature - chapter 11				Able to make a refractive seismic survey design, Able to do refraction seismic data processing Able to interpret refraction seismic data and make subsurface modeling based on refraction seismic data	
8		Practicum Module-04 "	Mid Semester Evalua	lation			40%
9	[C3, P3,A3] Understanding the basic concepts of the seismic reflection method. Being able to make a reflection seismic survey design,	"The basic concept of the seismic method of reflection; Survey design and measurement of seismic reflection methods; "Main literature - chapters 8 & 9 Supporting literature 1 - chapter 7 Practicum Module-05 "	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Understanding the basic concepts of the seismic reflection method.	"5% Task"

10	[C3, P3,A3]	Processing reflection	Direct Lecture,	TM:	Discussion;	Able to make	"5%
		seismic data;	Discussion;	1x(3x50")		reflection seismic	Task"
	Being able to	Interpretation and			Make a	survey design, Able	
	reflection seismic	modeling of seismic			summary	to do reflection	
	data processing.	reflection				seismic data	
		"Main literature -				processing	
		chapters 8 & 9					
		Supporting literature 1 -					
		chapter 7					
		Practicum Module-05 "					
11	[C3, P3,A3]	"Geological	Direct Lecture,	TM:	Discussion;	Able to interpret	"5%
		interpretation of	Discussion;	1x(3x50")		reflection seismic	Task"
	Being able to	reflection seismic data;			Make a	data and make	
	interpret seismic	Basic geological			summary	subsurface	
	reflection data	concepts;				modeling based on	
		Interpretation Procedure				reflection seismic	
		Geological features of				data	
		seismic data					
		"Main literature -					
		chapter 10					
		Practicum Module-06 "					

12	[C3, P3,A3] Being able to make subsurface modeling based on seismic reflection data.	Subsurface modeling based on seismic reflection data "Main literature - chapter 10 Practicum Module-06"	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-02	Being able to make subsurface modeling based on seismic reflection data	"5% Task"
13	[C3, P3,A3] Knowing the latest developments in seismic exploration methods	"3D seismik refleksi Main literature - chapters 12, 13, 14	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Knowing the development of the latest exploration seismic methods with special techniques	"5% Task"
14	[C3, P3,A3] Knowing the special techniques used in exploration activities using seismic methods	VSP survey Borehole seismik survey" Main literature - chapters 12, 13, 14	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Knowing the development of the latest exploration seismic methods with special techniques	"5% Task"
15	[C3, P3,A3] Students are able understand and able to explain the basic concepts of the seismic exploration	Case study "Utilization Seismic exploration methods" Study of literature from various sources	Group paper presentations, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Being able to make a brief paper about the use of seismic methods Being able to present papers on	"5% Task"

	method and explain					the results of	
	how to use the					literature studies	
	seismic method, both					made	
	the refraction method						
	and the reflection Able to conduct						
	method in					scientific	
	geophysical					discussions with a	
	exploration activities question and answer						
						mechanism	
16	End Semester Evaluation					40%	

- 1. Shearer, P. M., 2009, Introduction to Seismology, Cambridge University Press, Cambridge, UK.
- 2. Zobin, V. M., 2012, Introduction to Volcanic Seismology, Elsevier, London, UK.
- 3. Jens Havskov, Gerardo Alguacil (auth.)-Instrumentation in Earthquake Seismology-Springer International Publishing (2016)
- 4. Barbara Romanowicz, Adam Dziewonski-Seismology and Structure of the Earth_ Treatise on Geophysics-Elsevier (2009)
- 5. Agustin Udías-Principles of Seismology-Cambridge University Press (2000).
- 6. Thorne Lay, Terry C. Wallace-Modern Global Seismology, Vol. 58-Academic Press (1995)
- 7. V. I. Keilis-Borok (auth.), V. I. Keilis-Borok, Edward A. Flinn (eds.)-Computational Seismology-Springer US (1995)

Program Study	Geophysical Engineering Department
Course	Inversion Method
Course Code	RF184518
Semester	V (Five)
Credit	3 (Three) SKS
Lecturer	Juan Pandu Gya Nur Rochman, S.Si., M.T.

Study materials	Mathematics, Programming		
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise
(LO)		1.7	independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the
			context of development or implementation of science and technology that
			concerns and implements the value of humanities in accordance with their area of
			expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise
			and evaluate the work completion assigned to the worker under his or her
			responsibility;

		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO - Course		•	sic concept of inversion (inverse theorem) and inversion parameters of measured cophysics both linear and non-linear.

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning Experience	Indicators	(%)
1	2	3	4	5	6	7	8
1	[C4, P3,A3]	Introduction,	Direct Lecture	150 minute	Make a	Able to analyze	5%
	[Conceptual,	Data, errors,	120 minute		summary	data quality and	Task
	knowledge, analyze]:	probability and				error also	
	Students can	distribution	Discussion			distribution of	
	understand the basic	concepts	30 minute			data. Understand	
	concepts of inversion,					the concept of	
	data, error,					inversion	
	probability and					method	
	distribution methods						
2	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,		120 minute			Able to	
	knowledge, Analyze]:		D		3.5.1	understand the	5 0.4
	Students can	Linear systems	Discussion		Make a	basic concepts	5%
	understand the basic	-	30 minute		summary	of Linear	Task
	concepts of linear systems in inversion					Systems	
	methods						
3	[C4, P3,A3]		Direct Lecture	150 minute		Able to	
	[Conceptual,		120 minute			understand the	
	knowledge, Analyze]:		120 11111000			basic concepts	
	Mahasiswa	Vector norms,	Discussion		Make a	of Vector norms	5%
	memahami konsep	overdetermined	30 minute		summary	and be able to	Task
	dasar Vector norms	problem			•	solve cases of	
	dan mampu					overdetermined	
	menyelesaikan kasus					problems	

	overdetermined						
	problem						
4	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students can understand the basic concepts of Simple Least Square and are able to solve Simple Least Square cases	Simple least squares solution	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary Quiz-01	Able to understand the basic concepts of Simple Least Square and be able to solve Simple Least Square cases	5% Task 20% Quiz
5	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students understand the basic concepts of Mixed problems, damped least squares and are able to solve cases of underdetermined problems	Mixed problems, damped least squares dan underdetermined problems	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary	Able to understand the basic concepts of Mixed problems, damped least squares and able to solve cases of underdetermined problems	5% Task
6	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students can understand the basic concepts of the	Weighted least squares	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary	Able to understand the basic concepts of Weighted least squares	5% Task

	Weighted least square method						
7	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students can understand the basic concepts of Resolution	Resolution: data and model	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary	Able to understand the basic concepts of Resolution	5% Task
8			Mid Semester Eval	uation			40%
9	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students can understand the basic concepts of covariance	Covariance: data and model	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary	Able to understand the basic concepts of covariance	5% Task
10	[C4, P3,A3] [Conceptual, knowledge, Analyze]: Students can understand the basic concepts of non- linear inversion methods using Newton's approach and Gradient methods	Nonlinear problems: Newton and Gradient methods	Direct Lecture 120 minute Discussion 30 minute	150 minute	Make a summary	Able to solve non-linear problem using Newton and Gradient methods	5% Task

11	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,		120 minute				
	knowledge, Analyze]:					Able to solve	
	Students can	Nonlinear	Discussion			non-linear	
	understand the basic	problems: Grid	30 minute		Make a		5%
	concept of non-linear	and Monte Carlo			summary	problems using Grid and Monte	Task
	inversion method	searches				Carlo searches	
	using Grid and Monte					Carlo searches	
	Carlo searches						
	approach						
12	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,		120 minute				
	knowledge, Analyze]:					Able to solve	5%
	Students can	Nonlinear	Discussion		Make a	non-linear	Task
	understand the basic	problems:	30 minute		summary	problem using	Task
	concepts of non-	Simulated				Simulated	20%
	linear inversion	Annealing			Quiz-02	annealing	Quiz-02
	method using					method	Quiz-02
	simulated anealing						
	approach						
13	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,	Seismic	120 minute				
	knowledge, Analyze]:	inversions:				Able to seismic	
	Students can	Recursive	Discussion		Make a	data inversion	5%
	understand the basic	(Bandlimited) and	30 minute		summary	using model	Task
	concepts of model	Model Based				based methods	
	based seismic data	(Blocky)					
	inversion methods						

14	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,		120 minute				
	knowledge, Analyze]:	Seismic				Able to seismic	
	Students can	inversion: Sparse	Discussion		Make a	data inversion	5%
	understand the basic	Spike	30 minute		summary	using the Sparse	Task
	concept of the Sparse	Бріке				Spike method	
	Spike seismic data						
	inversion method						
15	[C4, P3,A3]		Direct Lecture	150 minute			
	[Conceptual,		120 minute				
	knowledge, Analyze]:	Case Study			Presentation	Able to review	5%
	Students can analyze	Reference Paper	Discussion		& Review		Task
	the application of	Reference Taper	30 minute		Paper	paper	Task
	inversion methods in						
	geophysics.						
16			End Semester Evalua	tion			

- 1. Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, 1989.
- 2. Tarantola, A., Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, 1987.
- 3. Sen, M.K., Stoffa, P.L., Global Optimization Methods in Geophysical Inversion, Elsevier, 1995
- 4. Grandis, H., Pengantar Inversi Geofisika, HAGI, 2009.

Program Study	Geophysical Engineering Department
Course	Geological Disaster Mitigation
Course Code	RF184519
Semester	V (Five)
Credit	3 (Three) SKS
Lecturer	Dr. Ir. Amien Widodo, M.S.

Study Materials	Geology, natural disaster
------------------------	---------------------------

O	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
(LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	Specific Skills	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;

		capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
	4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO - Course		are able to apply geophysics exploration methods, combine geophysical and geological data to rpretations, also competent in geological and geophysical field survey.

•	Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
	1	2	3	4	5	6	7	8

1	Students are able to understand the purpose of the course, lecture rules, teaching scope, definition of vulnerability, hazard and risk	Course purpose, class rules, teaching scope, definition of vulnerability, hazard and risk	Brainstorming (20 minutes), Introductory lecture (100 minutes), Discussion (30 minutes)	Brainstorming (20 minutes), Introductory lecture (100 minutes), Discussion (30 minutes)	Discussion	Learning process agreement, Definition of vulnerability, hazard and risk	
2	Students are able to understand the purpose of the course, lecture rules, teaching scope, definition of vulnerability, hazard and risk	Course purpose, class rules, teaching scope, definition of vulnerability, hazard and risk	Brainstorming (20 minutes), Introductory lecture (100 minutes), Discussion (30 minutes)	. Brainstorming (20 minutes), Introductory lecture (100 minutes), Discussion (30 minutes)	Discussion	Learning process agreement, Definition of vulnerability, hazard and risk	
3	Students are able to understand the meaning of landslide disaster, landslide occurrence controller factors, landslide occurrence trigger factors, landslide mechanism, landslide management methods, study case of landslide in Indonesia.	the meaning of landslide disaster, landslide occurrence controller factors, landslide occurrence trigger factors, landslide mechanism. Lee,E.M and Jones, D. K. C,2004, landslide risk assessment, Thomas Telford	self-learning and simple paper making and group presentation about land movement disaster.	Direct Lecture(30 minutes), group presentation(40 minutes) Group discussion(30 minutes), (Assignment-2: Problem & Solving),	Discussion	The accuracy of understanding the meaning of landslide disaster, landslide occurrence controller factors, landslide occurrence trigger factors, landslide mechanism, landslide	

						management methods	
4	Students are able to understand the meaning of landslide disaster, landslide occurrence controller factors, landslide occurrence trigger factors, landslide mechanism, landslide management methods, study case of landslide in Indonesia.	Landslide management meethods. Lee,E.M and Jones, D. K. C,2004, landslide risk assessment, Thomas Telford	self-learning and simple paper making and group presentation about land movement disaster.	Direct Lecture(30 minutes), group presentation(40 minutes) Group discussion(30 minutes), (Assignment-2: Problem & Solving),	Presentation	The accuracy of understanding the meaning of landslide disaster, landslide occurrence controller factors, landslide occurrence trigger factors, landslide mechanism, landslide management methods	10%

5	Students are able to understand the	the meaning of earthquake, types of	self-learning and simple paper	Direct lecutre (60 minutes), rock	Discussion	the accuracy of understanding the	
	meaning of	earthquake wave,	making and group	observation in		meaning of	
	earthquake, types of	earthquake	presentation about	megascopic(30		earthquake, types	
	earthquake wave,	occurrence	land movement	minutes), group		of earthquake	
	earthquake	mechanism, David,	disaster.	discussion(50		wave, earthquake	
	occurrence	D.,2003,Earth quake		minutes), quiz(10		occurrence	
	mechanism,	risk reduction, John		minutes)		mechanism,	
	earthquake	Wiley and Son				earthquake	
	management					management	
	methods, study case					methods, study	
	of earthquake in					case of	
	Indonesia.					earthquake in	
						Indonesia.	
6	Students are able to	earthquake	self-learning and	Direct lecutre (60	Presentation	the accuracy of	10%
	understand the	management	simple paper	minutes), rock		understanding the	
	meaning of	methods, study case	making and group	observation in		meaning of	
	earthquake, types of	of earthquake in	presentation about	megascopic(30		earthquake, types	
	earthquake wave,	Indonesia. David,	land movement	minutes), group		of earthquake	
	earthquake	D.,2003,Earth quake	disaster.	discussion(50		wave, earthquake	
	earthquake occurrence	D.,2003,Earth quake risk reduction, John	disaster.	discussion(50 minutes), quiz(10		wave, earthquake occurrence	
	-	_ · · · · · · · · · · · · · ·	disaster.	`			
	occurrence	risk reduction, John	disaster.	minutes), quiz(10		occurrence	
	occurrence mechanism,	risk reduction, John	disaster.	minutes), quiz(10		occurrence mechanism,	
	occurrence mechanism, earthquake	risk reduction, John	disaster.	minutes), quiz(10		occurrence mechanism, earthquake	
	occurrence mechanism, earthquake management	risk reduction, John	disaster.	minutes), quiz(10		occurrence mechanism, earthquake management	
	occurrence mechanism, earthquake management methods, study case	risk reduction, John	disaster.	minutes), quiz(10		occurrence mechanism, earthquake management methods, study	

7	Students are able to understand the meaning of flood, flood occurrence mechanism, flood management methods, study case of flood in Indonesia.	the meaning of flood, flood occurrence mechanism	self-learning and simple paper making and group presentation about flood disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Presentation	the accuracy of understanding the meaning of flood, flood occurrence mechanism, flood management methods, study case of flood in Indonesia.	
8			Mid Semester Ev	alution			20%
9	Students are able to understand the meaning of flood, flood occurrence mechanism, flood management methods, study case of flood in Indonesia.	flood management methods, study case of flood in Indonesia.	self-learning and simple paper making and group presentation about flood disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Presentation	the accuracy of understanding the meaning of flood, flood occurrence mechanism, flood management methods, study case of flood in Indonesia.	10%
10	Students are able to understand the meaning of tsunami disaster.	the meaning of tsunami disaster, types of earthquake wave, earthquake occurrence mechanism,	self-learning and simple paper making and group presentation about tsunami disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Presentation	the meaning of tsunami disaster	

11	Students are able to understand the meaning of tsunami disaster.	tsunami management methods, study case of tsunami in Indonesia.	self-learning and simple paper making and group presentation about tsunami disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Presentation	tsunami management methods	10%
12	Students are able to understand the meaning of volcanic eruption disaster.	the meaning of volcanic eruption disaster.	self-learning and simple paper making and group presentation about volcanic eruption disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Discussion	the meaning of volcanic eruption disaster	
13	Students are able to understand the meaning of volcanic eruption disaster.	volcanic eruption management methods, study case of volcanic eruption in Indonesia.	self-learning and simple paper making and group presentation about volcanic eruption disaster.	Direct lecutre (60 minutes), rock observation in megascopic(30 minutes), group discussion(50 minutes), quiz(10 minutes)	Presentation	the meaning of volcanic eruption disaster	10%

14	Government Policies	Policies on Disaster mitigation unit, Government policies on disaster mitigation and anticipation.	Self-learning	Direct Lecture (60 minutes) Discussion (60 minutes)	Discussion	understand the government policies on disaster mitigation	
15	Hazard estimation level using geographic information system	hazard mapping on study case disaster in Indonesia	Self-learning	Direct Lecture (60 minutes) Discussion (60 minutes)	Presentation and discussion	understand the disaster hazard mapping	10%
16	End Semester Evaluati	on					20%

- 1. Hamblin, W.K., 1982; The Earth's Dynamic Systems; 3rd Edition. Minesotta.
- 2. http://www.tulane.edu/~sanelson/Natural_Disasters/oinformatic for Disasters ://nidm.gov.in/PDF/modules/geo.pdf
- $3. \ \ ftp://ftp.itc.nl/pub/westen/Multi_hazard_risk_course/Powerpoints/Background \% 20 paper \% 20 Spatial \% 20 data \% 20 for \% 20 hazard \% 20 and \% 20 risk \% 20 assessment.pdf$
- 4. https://www.bnpb.go.id/home/get_publikasi/12/buku
- 5. https://www.bnpb.go.id/home/get_publikasi/13/jurnal
- $6. \quad https://www.marshall.edu/cegas/geohazards/2015pdf/Session1/03_GeobruggCanopyPP.pdf$
- 7. https://www.bnpb.go.id/home/aplikasi

Program Study	eophysical Engineering Department				
Course	hermodynamics				
Course Code	RF184520				
Semester	V (Five)				
Credit	3 (Three) SKS				
Lecturer	Juan Pandu Gya Nur Rochman, S.Si., M.T.				

Study Materials	Temperature, I	Dynam	ics
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
(LO) General Skills		2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;	
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	Specific Skills	4.12	being able to criticise the complete operational procedure in solving geophysical engineering technology problems which has been and / or is being implemented, and set forth in the form of scientific work papers.

LO - Course

[C4,P3,A3] Students are able to analyse thermodynamics system, thermodynamics law, empirical relation of thermodynamic variables, imaging technique of thermodynamics variable components, and geoscience interpretation, also the application of thermodynamics in geoscience.

						Assessment				
Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)			
	KONSEP TERMODINAMIKA, SISTEM,SUHU,PANAS,ENERGI, DAN KERJA, HK 1&2 TERMODINAMIK									
(1,2)	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain the basic concept of Thermodynamics	The concept of Thermodynamics [1]:K1_Introduction K2_Study Case/Application	Introductory Lecture, lecture contract and brainstorming (Assignment-1: Review on Thermodynamics and its applications 4x50")	[TM: 2x(4x50")]	Oral Quiz	The accuracy of explaining the basic concept of thermodynamics, and its scope	10%			
3	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain the thermodynamics system, temperature, and energy	Thermodynamics system Temperature, Energy, and Works	Direct Lecture, Group Discussion; (Assignment-2: Problem & Solving) [BT+BM:2x(4x50")]	[TM: 1x(4x50")]	Oral Quiz	The accuracy of explaining thermodynamics system The accuracy of explaining	10%			

						temperature, energy, and works	
(4,5)	[C3,P3,A2][Conceptual knowledge, Application] : Students are able to explain first thermodynamics law	First thermodynamics law	Direct Lecture, Group Discussion;	[TM: 1x(4x50")]	Written Quiz-1	The accuracy of explaining First thermodynamics law	10%
	and its application, heat, and enthalpy	Heat and Enthalpy	(Assignment-3: First thermodynamics law exercises [BT+BM:2x(4x60")]			The accuracy of applying First thermodynamics law	
						Solving Thermodynamics Law 1 Problems	
6	[C3,P3,A2][Conceptual knowledge, Application] : Students are able to	Second thermodynamics law	Direct Lecture, Group Discussion;	[TM: 2x(4x50")]	Written Quiz-1	The accuracy of explaining First thermodynamics law	10%
	explain second thermodynamics law and its application	The concept of Entropy			Group Presentation	The accuracy of solving problems	
		Reversible - Irreversible	(Assignment -4: Exercises (BT+BM:2x(4x60")]			The accuracy of explaining the concept of reversible and irreversible	

7	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain and solve the Gibbs-Helmholtz equation and Maxwell equation in	Gibbs-Helmholtz equation Maxwell equation	Direct Lecture, Group Discussion; Assignment: Exercises	[TM: 2x(4x50")]	Written Quiz-1	The accuracy of explaining and solving Gibbs-Helmholtz equation The accuracy of explaining and solving Maxwell	10%			
	thermodynamics					equation				
8	Mid Test Evaluation									
	PHASE DIAGRA	AM, THERMODYNA	MICS APPLICATION	ON GEOLOGY<	GEOTHERN	IAL, FLUID FLOW				
(9, 10)	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain clapericon and phase diagram	Phase Diagram Clapericon relations	Direct Lecture, Group Discussion;	[TM: 2x(4x50")]	Written Quiz-1	The accuracy of explaining phase diagram, and solving problems The accuracy of explaining Clapericon relations and solving problems	10%			
(11, 12)		Thermodynamics on minerals	Group Discussion;	[TM: 2x(4x50")]		The accuracy of explaining the application of	10%			

	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain the application of thermodynamics in geology and geothermal	Thermodynamics on Geothermals [2]: 145-197	Assignment: Review on Application in Geothermal and Geology		Group Assignment: Study Case	thermodynamics in Geology The accuracy of explaining the application of thermodynamics in Geothermals	
(13, 14)	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain fluids and fluid dynamics	Fluids Fluid dynamics: Newtonian, nonnewtonian, Bernoulli, and Viscosity [2]: 145-197	Direct Lecture and brainstorming, Group Discussion;	[TM: 2x(4x50")]	Group Assignment: Study Case	The accuracy of explaining fluids and solving problems The accuracy of explaining fluid dynamics and solving problems	15%
15	[C3,P3,A2][Conceptual knowledge, Application]: Students are able to explain the empirical fluids	viscous flow: Empirical Parameter: Reynold, Releigh, Prandtl, Peclet	Study Case & Group Discussion (Assignment -5: Exercises [BT+BM:2x(4x60")]	[TM: 1x(4x50")]	Written Quiz-1 Group Assignment: study case	The accuracy of explaining empirical fluids and problems example	15%

End Semester Evaluation

- 1. Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, Fundamentals Of Engineering Thermodynamics, John Wiley & Sons, 2014
- 2. Anderson, G.M., Thermodynamics of Natural Systems (2nd edition), Cambridge University Press, 2009

Program Study	Geophysical Engineering Department
Course	Capita Selecta
Course Code	RF184521
Semester	V (Five)
Credit	2 (T:2) SKS
Lecturer	 Dr. Ayi Syaeful Bahri, S.Si., M.T. Dr. Ir. Amien Widodo, M.S.

Study Materials	Topics adapted to t	Topics adapted to the latest developments or / and at the request of the Stakeholder						
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;					
outcome (EO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;					
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;					
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;					
	Knowledge	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;					

		3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;			
		3.7	understanding the factual insights and technology application methods; codes and national/international standards as well as the regulations in force in his/her work area to carry out geophysical engineering technology work in depth;			
	Specific Skills	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;				
LO - Course	[C2,P2,A2] Students are able to understand the development in exploration technology in the context of utilization of naturesources, environment and energy as well as specific topics relevant to the latest developments.					

Wee k	The Expected of Sub LO-Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience*	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand and master the current conditions of a given topic	Introduction to current developments of a given topic	Introductory Lecture, Brainstorming; (Assignment: Write a Resume on current developments	TM: (2x50")	Discussion (application and development of a given topic); Assignment: Fundamentals of a given topic's concept	Get to know the basic theoretical concept of current developments of a given topic in general	

			of a given topic)				
2	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand the basic concept of a given topic	The concept and basic principle of a given topic (subject - 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Study Case of a given topic's problem analysis	The accuracy of explaining	
3	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand the basic concept of a given topic	The concept and basic principle of a given topic (subject - 2)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic);	The accuracy of explaining	
4	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand the basic concept of a given topic	The concept and basic principle of a given topic (subject - 3)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic);	The accuracy of explaining	

5	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand and analyse the basic concept of a given topic	The concept and basic principle of a given topic (subject - 4)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic);	The accuracy of explaining	
6	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand and analyse the basic concept of a given topic	The concept and basic principle of a given topic (subject - 5)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic);	The accuracy of explaining	
7	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand and analyse the basic concept of a given topic	The concept and basic principle of a given topic (subject - 6)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic);	The accuracy of explaining	
8		M	lid Semester Evalua	ntion			20%
9	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic	The concept and basic principle and applications of a given topic subject - 7 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, presented per small group (2-3 ppl)	The accuracy of explaining	

10	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic	The concept and basic principle and applications of a given topic subject - 8 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, presented per small group (2-3 ppl)	The accuracy of explaining	
11	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic	The concept and basic principle and applications of a given topic subject - 9 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, presented per small group (2-3 ppl)	The accuracy of explaining	
12	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic	The concept and basic principle and applications of a given topic subject - 10 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, presented per small group (2-3 ppl)	The accuracy of explaining	20%

13	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic in a project/ a research	The concept and basic principle and applications of a given topic in self-project subject - 11 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, in self-project, presented per small group (2-3 ppl)	The accuracy of explaining	
14	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic in a project/ a research	The concept and basic principle and applications of a given topic in self-project subject - 12 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, in self-project, presented per small group (2-3 ppl)	The accuracy of explaining	
15	[C4,P4,A4] [Conceptual knowledge, Analyze] Students are able to understand, analyse, and apply the basic concept of a given topic in a project/ a research	The concept and basic principle and applications of a given topic in self-project subject - 12 (Study case 1)	Direct Lecture, Discussion;	TM: (2x50")	Discussion (The concept and basic principle of a given topic); Assignment: Analysing and Applying in study case, in self-project, presented per person (Tugas Besar)	The accuracy of explaining	20%
16		E	nd Semester Evalua	tion			20%

- 1. Telford, WM; Geldart, L.P; Sheriff, RE, 1998, Applied Geophysics, Cambridge Univ Press, Cambridge.
- 2. Geophysics Journal and Near-Surface Geophysics Journal
- 3. Geothermal Journal
- 4. SPE Journal

Program Study	Geophysical Engineering Department
Course	Data Analysis Well Log
Cource Code	RF184622
Semester	VI (Six)
Credit	4 SKS (T:3, P:1)
Lecturer	Firman Syaifuddin, S.Si., M.T.

Study materials	Seismic, Logging		
Learning Outcome	Attitude	1 9	demonstrating attitude of responsibility on work in his/her field of expertise
(LO)		1.7	independently;

	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
		3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
		3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
		3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
		3.9	mastering the principles of quality assurance in general in geophysics engineering work;

	1	1						
		3.10	understanding the concepts and principle of environmental preservation in general free geophysical engineering activities;					
		3.11	mastering factual knowledge of current principles and issues in economic, socio-cultural and ecological issues in general that have an influence on the field of geophysics engineering;					
		3.14	mastering general concepts, principles, and techniques of effective communication orally and in writing for specific purposes in general; and					
		3.15	mastering factual knowledge about the development of cutting-edge technology and advanced materials in the field of geophysical engineering in deep					
		4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;					
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;					
		4.3	being able to conduct research that includes identification, formulation, and analysis of geophysical engineering problems;					
		4.4	being able to formulate alternative solutions to solve complex geophysical engineering problems by considering economic, health, public safety, cultural, social and environmental factors;					

		4.5	being able to design systems, processes, and components with an analytical approach and consider technical standards, aspects of performance, reliability, ease of application, sustainability and pay attention to economic, health and public safety, cultural, social and environmental factors;				
		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;				
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;				
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;				
LO – Course	[C3,P3,A3] Students can understand the basic concepts of formation evaluation, wellbore environment, working principles and measurement of well logging, understanding theories about well log including interpreting well log data, being able to apply the concept of well log for evaluation of formation.						

Week	The Expected of	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course				Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8

1	[C3, P3,A3]	1. Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Understanding	"5%
	Students can	Lecture:	contract and			what will be	Task"
	understand what will	• Semester	brainstorming;		Make a	learned in this	
	be learned in this	Learning Plans			summary	lecture	
	lecture,	• College					
	understanding the	Contracts				Understanding the	
	fundamentals of rock	 Scoring system 				basic parameters of	
	physics parameters					rock physics	
		2. Review of rock					
		physics courses					
		(physical					
		parameters of rocks)					
2	[C3, P3,A3]	• Terminology in	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Students can	well log	Discussion;			explain the terms	Task"
	understand the terms	• Well log data			Make a	used in well log	
	in well log,	types			summary		
	understanding well	Borehole				Understanding the	
	log data types,	enviroment				types of well log	
	understanding terms	• Well log				data types	
	in the borehole	measurement				Understanding the	
	environment,	equipment				terms in borehole	
	knowing well log					environment	
	data collection tools,	 Acquisition of 					
	know how to collect	well log data				Knowing well log	
	well log data					data equipment,	
		Main Book 1				know how to	
		chapter-01				collect well log	
						data	

3	[C3, P3,A3]	The basic equation	Direct Lecture,	TM: 1x(3x50")	Discussion;	Understanding the	"5%
	Students can	in analyzing well	Discussion;			basic equations	Task"
	understand the basic	log data			Make a	used in well	
	equations, rock types,	Rock and fluid			summary	logging data	
	physical properties of	properties				analysis	
	rocks in analyzing	• Rock classification					
	well log data	• Porosity				Being able to	
		• Saturation				explain the types	
		 Permeability 				of rock types based	
		Capillary pressure				on physical	
		 Fluid property 				properties	
		• Salinity					
		Temperature				Understanding	
		formation				rock types,	
						physical properties	
		Main Book 2				in well log data	
		chapter-01					
4	[C3, P3,A3]	• Log self-potential	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the	• Log Gamma ray	Discussion;			characteristic of	Task"
	characteristic of the	• Log Resistivitas			Make a	the potential self-	
	potential self-log				summary	log data, gamma	15%
	data, gamma ray and					ray and resistivity	Quiz
	resistivity,	Main Book 2					
	Understanding the	chapter -02,03 & 05			Quiz-01	Understanding the	
	information					information in	
	contained in each					each well logging	
	well logging data					data	
5	[C3, P3,A3]	"• Log densitas	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
		• Log sonic	Discussion;			characteristic of	Task"

	Knowing the	• Log neutron			Make a	density, sonic,	
	characteristic of the	• Log Porositas			summary	neutron and	
	density, sonic,	"				porosity log data	
	neutron and porosity						
	log data,					Understanding the	
	Understanding the	Main Book 2				information in	
	information in each	chapter -04				each well log data	
	well logging data						
6	[C3, P3,A3]	"• Log Magnetic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
		resonance imaging	Discussion;			characteristic of	Task"
	Knowing the	(NMR)			Make a	the magnetic	
	characteristic of the	Borehole imaging			summary	resonance imaging	
	data log Magnetic	"				(NMR) and	
	resonance imaging					Borehole imaging	
	(NMR) and Borehole					log data	
	imaging,	Main Book 2					
	Understanding the	chapter -06 & 09				Understanding the	
	information in each					information in	
	data well log					each well log data	
7	[C3, P3,A3]	"Quicklook Log	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
		Interpretation	Discussion;			evaluate the	Task"
	Knowing how to	• Evaluation of the			Make a	quality of well log	
	evaluate data quality,	quality of well log			summary	data	
	understanding how to	data					
	define reservoir	• Identify reservoir				Being able to	
	layers, understanding	layers				determine the	
	how to calculate	• Identification of				reservoir layer	
	reservoir parameters	types and limits of					
		fluid contact					

		 Calculation of porosity Calculation of hydrocarbon saturation Calculation of permeability Main Book 1 chapter-02 				Being able to calculate reservoir parameters	
8		· ··•	Mid Semester Evalu	uation			40%
9	[C3, P3,A3] Understanding how to interpret well log data by utilizing all available information, determine effective reservoir parameters	"Full Interpretation • Defining net sand • Calculation of effective porosity • Archie saturation calculation • Calculation of effective permeability " Main Book 1 chapter-03	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Understanding how to interpret well log data by utilizing all available information Being able to determine effective reservoir parameters	"5% Task"
10	[C3, P3,A3] Understanding some advanced interpretation	"Advanced Log Interpretation Techniques • Shaly sand analysis	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Knowing the advanced interpretation techniques of well log data	"5% Task"

	techniques for well log data	 Carbonates Multi mineral analysis Thin bed analysis Borehole correction " Main Book 1 chapter 05				Being able to interpret well log data	
11	[C3, P3,A3] Knowing how to integrate well log data with seismic data, understanding the concept of mechanical rock	chapter -05 "Integration with Seismic • Synthetic Seismograms • Fluid Replacement Modeling • Acoustic/Elastic Impedance Modeling Rock Mechanics " Main Book 1 chapter -06 & 07	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to integrate seismic data and well log data Knowing the concept of mechanical rock	"5% Task"
12	[C3, P3,A3]	"Value of Information	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a	Able to explain economic terms from the results of	"5% Task"
	Knowing the economic terms from the results of	Capital expensesOperating expenses			summary	well log data interpretation	

	interpretation of well log data	• Net present value Equitydetermination s			Quiz-02	"able to do calculations	
		 Gross bulk volume Net pore volume Hydrocarbon pore volume Barrels of oil equivalent Reserves. Main Book1				 Gross bulk volume Net pore volume Hydrocarbon pore volume Barrels of oil equivalent Reserves. 	
13	[C3, P3,A3]	chapter -08 & 09 "Production	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the basics of geological concepts in integrating the results of well log data interpretation, Knowing the terms reservoir engineering	Geology Issues • Understanding Geological Maps • Basic Geological Concepts Reservoir Engineering Issues • Behavior of Gases • Behavior of Oil/Wet Gas Reservoirs • Material Balance • Darcy's Law • Well Testing "	Direct Lecture, Discussion;	TWI: 1x(3x30)	Make a summary	knowing the basics of geological concepts used in integrating the results of well logging data interpretation Able to explain the terms reservoir engineering	Task"

		Main Book1					
		chapter -10 & 11					
14	[C3, P3,A3]	"• Well Deviation	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
		• Surveying	Discussion;			several terms in	Task"
	Knowing several	Geosteering			Make a	well drilling	
	terms in well drilling,	"			summary		
	understanding the					Understanding the	
	physical properties of	Main Book1				characteristic of	
	wellbore	chapter -13				the wellbore	
15	[C3, P3,A3]	Case study	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to be	"5%
	Being able to		Discussion;			integrated well log	Task"
	integrate well log				Make a	data analysis	
	data analysis				summary		
16			End Semester Evalu	ation			40%

- 1. Darling, T., "Well Logging and Formation Evaluation", Elsevier Inc., 2005. Zobin, V. M., 2012, Introduction to Volcanic Seismology, Elsevier, London, UK.
- 2. Tiab, D. and Donaldson, E.C., "Petrophysics 2nd.", Elsevier, 2004.
- 3. Asquith, G. B. And Krygowski, D., "Basic Well Log Analysis, 2nd", American Association of Petroleoum Geologist, 2004.
- 4. Rider, M., "The Geological Interpretation of Well Logs, 2nd", Rider-French Consulting Ltd., 2002.
- 5. Asquith, G.B. And Gibson, C.R., "Basic Well Log Analysis for Geologist", American Association of Petroleoum Geologist, 1982.

Program Study	Geophysical Engineering
Course	Electromagnetic Exploration
Code	RF184623
Semester	VI (Six)
Credit	4 (T:2,P:2) SKS
Lecturer	Wien Lestari, S.T., M.T.

Study Materials	Waves, Mathematics, Geolog	y	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	2	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	edge 3.4	understanding the theoretical concepts of engineering science (engineering sciences), engineering principles and engineering design methods that required for the analysis and design of systems, processes, products or components in the field of deep geophysical engineering;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from

			data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;
		3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
		3.10	understanding the concept and principle of environmental conservation in general from the activities of geophysical engineering;
		3.12	understanding the concept, principles, workshop procedures, studio and laboratory activities and implementation of safety, occupational health and environment (K3L) in general;
	Specific Skill	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.6	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;

		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented, and poured in the form of scientific papers.
LO- Course	the Electromagnetic Method collection, processing, analyz complete deep surface geophy	(GPR, zing the sical eng	the concepts, principles and techniques of system design, process or components of VLF, and MT) application and carry them out procedurally starting from data results of interpretation with subsurface geological conditions and modeling to gineering issues deeply in mine exploration, hydrogeology, geotechnical engineering responsible for the results of one's own work and groups through scientific reports

Week	The Expected of	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO-Course				Learning	Indicators	(%)
					Experience*		
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students	Introduction to the EM	Direct Lecture	DL: 2x(4x50")	Discussion	Get to know EM	
	are able to understand	Method, the				applications in	
	the electromagnetic	development of the				general	
	method (EM) and its	EM method and					
	development	general applications					
		L1: introduction to EM					
		methods and their					
		development					

2	[C4,P4,A4]	Basic principles	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	EM methods,		, (7,		explained	
	explain the concept	Maxwell's Equation				1	
	of EM methods	L2: Electric Field					
		Equation, Magnetic					
		Field and Maxwell					
		Equation					
3	[C4,P4,A4]	L3 : Introduction to the	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	magnetotelluric				explained	
	explain the concept	method, skin depth					
	of EM methods						
4	[C4,P4,A4]	L4: Introduction to the	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	data processing stages				explained	
	explain the	of the MT method					
	processing of the						
	Magnetotelluric						
	method						
5	[C4,P4,A4]	L5: Case study, data	Direct Lecture	DL: 1x(4x50");	Practicum	The accuracy of	10%
	Students are able to	processing		[SL+Self-		applying a good	
	apply			Learning:2x(4x60		filter to improve	
	Magnetotelluric			")]		data quality	
	method processing						
6	[C4,P4,A4]	L6: Case study,	Direct Lecture	DL: 1x(4x50")	Discussion	Accuracy in	10%
	Students are able to	pengolahan data				explaining and	
	explain the concept					comparing	
	of CSAMT-AMT and						
	apply Magnetotelurik						
	processing methods						

7	[C4,P4,A4]	L7: CSAMT and	Direct Lecture	DL: 1x(4x50");	make resume	The accuracy of	10%
	Students are able to	AMT data processing		[SL+Self-	paper with	applying a good	
	explain the concept			Learning:2x(4x60	CSAMT and	filter to improve	
	of CSAMT-AMT and			")]	AMT-	data quality	
	apply Magnetotelurik				Practicum		
	processing methods				methods		
8			Semester Middle Eva	luation		_	30%
9	[C4,P4,A4]	L9 : Introduction to the	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	VLF method				explained	
	explain the concept						
	of Very Low						
	Frequency						
10	[C4,P4,A4]	L10: Introduction to	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	the processing stages				explained	
	explain the						
	processing phase of						
	Very Low Frequency						
11	[C4,P4,A4]	L11: Introduction to	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	10%
	Students are able to	the stages of modeling			Resume	explained	
	explain the	and development of the					
	processing phase of	VLF method					
	Very Low Frequency						
12	[C4,P4,A4]	L12: Introduction to	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
	Students are able to	the GPR method				explained	
	explain the concept						
	of Ground						
	Penetrating Radar						
13	[C4,P4,A4]	L13: Introduction to	Direct Lecture	DL: 1x(4x50");	Discussion	Accuracy	
		the processing stages			Practicum	explained	

	Students are able to						
	explain the stages of						
	GPR processing						
14	[C4,P4,A4]	L14: Introduction to	Practicum	TM: 1x(4x50");	Discussion	Accuracy	
	Students are able to	the processing stages		[BT+BM:2x(4x6	Practicum	explained	
	apply the EM VLF			0")]			
	and GPR methods						
15	[C4,P4,A4]	L15: Introduction to	Practicum	TM: 1x(4x50");	Discussion	Accuracy	
	Students are able to	the processing stages		[BT+BM:2x(4x6	Practicum	explained	
	apply the EM VLF			0")]			
	and GPR methods						
16	Semester Final				Presentation		30%
	Evaluation				Report		

- 1.Telford, W., Geldart, L.P., Sheriff, R. E. (1976). Applied Geophysics. Cambridge Univ Press, Cambridge.
- 2. Griffiths, D. J. (1999). Introduction to Electrodynamics, 3rd ed., Prentice Hall.
- 3. Zhdanov, M. S. (2009). Geophysical Electromagnetic Theory and Methods. Elsevier.
- 4. Simpson, F. and Bahr, K. (2005). Practical Magnetotelluric. Cambridge.
- 5. Jurnal Geofisika

Program Study	Geophysical Engineering Department
Course	Geotechnic
Cource Code	RF184624
Semester	VI (Six)
Credit	3 (T:3) SKS
Lecturer	Dr.Dwa Desa Warnana, S.Si., M.Si.

Study materials	Geology, Geophysics		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyze and design system, process, product, or component in geophysics engineering in deep;

		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
		3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in
			general;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.10	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
CP – Mata Kuliah	[C4,P4,A4] Students are able to master the concepts, principles and techniques of system design, process or component application of geophysical methods for environmental problems and carry them out procedurally starting from data collection, processing, analyzing the results of interpretation with subsurface geological conditions and modeling to solve physical environmental problems and mitigation deeply and responsibly towards the results of their own work and groups through scientific reports and presentations.		

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning	Criteria and Indicators	Weight (%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand geotechnics concepts	Introduction	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion	the accuracy of explaining	5%
2	[C4,P4,A4] Students are able to understand the meaning and role of geophysics methods to solve engineering problems, for example the case of engineering geophysics applications; physical parameters and engineering	Geophysics methods to solve engineering problems, for example the case of engineering geophysics applications; physical parameters and engineering	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion (plate dynamics in geophysics); : Exercises	the accuracy of explaining	10%
3	[C4,P4,A4] Students are able to understand the methodology, analysis and interpretation of technical geophysics;	Engineering geophysics methodology, analysis and interpretation;	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Task-K10: Exercises	the accuracy of explaining	10%

4	[C4,P4,A4] Students are able to understand the methodology, analysis and interpretation of engineering geophysics;	Engineering geophysics methodology, analysis and interpretation;	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Task-K10: Exercises	the accuracy of explaining	10%
5	[C4,P4,A4] Students are able to understand the application of geophysics methods to technical geology problems	Application of geophysics methods to technical geology problems	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Task-K10: Exercises	the accuracy of explaining	10%
6	[C4,P4,A4] Students are able to understand the application of geophysics methods to technical geology problems	Application of geophysics methods to technical geology problems	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Task-K10: Exercises	the accuracy of explaining	10%
7	[C4,P4,A4] Case study	Case study	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Task-K10: Exercises	the accuracy of explaining	10%
8			Mid Semester Evalu	ation			30%
9	[C4,P4,A4] Students are able to apply geophysics methods to geotechnics problems	Geophysics methods for geotechnics problems	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (plate dynamics in geophysics);	Get to know the general formula of plate dynamics	

10	(determination of geotechnics parameters from geophysics measurements) [C4,P4,A4] Students are able to apply geophysics methods to geotechnics problems	Geophysics methods for geotechnics problems	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion (plate dynamics in geophysics); Task-K10:	the accuracy of explaining	5%
	(determination of geotechnics parameters from geophysics measurements)				Exercises		
11	[C4,P4,A4] Students are able to analyze geotechnical evaluations of soil conditions: soil corrosion,	geotechnical evaluation of soil conditions: soil corrosion,	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining and comparing	
12	[C4,P4,A4] Students are able to analyze geotechnical evaluations of soil conditions: soil corrosion,	geotechnical evaluation of soil conditions: soil corrosion,	Direct Lecture, Discussion;Video	TM: 1x(3x50")	Discussion Quiz-K12 :stress dan strain	Ketepatan menjelaskan	5%
13	[C4,P4,A4] Students can understand the	Students are able to understand	Direct Lecture, Discussion;Video	TM: 1x(3x50")	Discussion Task-K13:	the accuracy of explaining	10%

	strength of the soil, the potential of liquefaction, etc.,	pollution in the marine environment		[BT+BM:2x(4x6 0")]	practice of making a script program about flow simulation in the earth.		
14	[C4,P4,A4] construction materials, foundation structures, dams, etc.);	Case study	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
15	[C4,P4,A4] Case study.	Case study	Discussion;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion Exercises: Presentation and resume of geodynamic studies in geophysics	the accuracy of explaining	
16	End Semester Evaluation						30%

- 1. Telford, W.M; Geldart, L.P; Sheriff, R.E., 1998. Applied Geophysics. Cambridge Univ Press, Cambridge.
- 2. Zhdanov, M. S. and Keller, G. V., 1994. The Geoelectrical Methods in Geophysical Exploration. Elsevier
- 3. Ward, S. H. (ed.), 1990. Geotechnical & Environmental Geophysics, Soc. Expl. Geophys., 1032 pp,
- 4. McDowell P Wet al, 2002. Geophysics in engineering investigations, ciria
- 5. Jurnal Geofisika

Program Study	Geophysical Engineering Department			
Course	ismic Data Processing and Acquisition			
Cource Code	RF184625			
Semester	VI (Six)			
Credit	3 (T:2, P:1) SKS			
Lecturer	Firman Syaifuddin, S.Si., M.T.			

Study materials	Wave, Computation		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge		understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;

3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
3.9	mastering the principles of quality assurance in general in geophysics engineering work;
3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
3.11	mastering factual knowledge of current principles and issues in economic, socio-cultural and ecological issues in general that have an influence on the field of geophysics engineering;
3.14	mastering general concepts, principles, and techniques of effective communication orally and in writing for specific purposes in general; and
3.15	mastering factual knowledge about the development of cutting-edge technology and advanced materials in the field of geophysical engineering in deep

Specific Skills	engii meth mode envii	g able to apply the principles of mathematics, science and neering principles into procedures, processes, systems or modologies of geophysical engineering, to create or modify tels in solving complex engineering problems in the fields of tronment, settlement, marine and energy with the concept of trinable development;
	proc	g able to find the source of engineering problems through the ess of investigation, analysis, interpretation of data and information d on the principles of geophysical engineering;
		g able to conduct research that includes identification, formulation, analysis of geophysical engineering problems;
	geop	g able to formulate alternative solutions to solve complex physical engineering problems by considering economic, health, ic safety, cultural, social and environmental factors;
	analy perfo	g able to design systems, processes, and components with an ytical approach and consider technical standards, aspects of ormance, reliability, ease of application, sustainability and pay attorn to economic, health and public safety, cultural, social and conmental factors;
	desig	ble of selecting resources and utilizing geophysical engineering gn and analysis tools based on appropriate information and outing technologies to perform geophysical engineering activities;
	throi	g able to improve the performance, quality or quality of a process 1gh testing, measurement of objects, work, analysis, interpretation 1sta in accordance with procedures and standards of geophysical

			exploration activities by paying attention to geological rules and exploration purposes;
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
LO – Course	[C4,P4,A4] Students are able to make 2-data processing (basic seismic processing		sional and 3-dimensional seismic acquisition design, able to do seismic

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4, P3,A3]	1. Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Able to	"5%
	Students are able to	Lecture:	contract and			understand of	Task"
	understand the	• Semester	brainstorming;		Make a	seismic	
	concept of seismic	Learning Plans			summary	exploration	
	exploration	• College					
		Contracts					
		Scoring system					
		Seismic					
		Exploration					
		Method					
2	[C3, P3,A3]	Design of 2-	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to create 2-	"5%
	Students are able to	dimensional	Discussion;			dimensional	Task "
	understand the	seismic refraction			Make a	seismic	
	concept of 2-				summary	reflection and	

	dimensional refraction and reflection seismic design and are able to make 2-dimensional refraction and reflection seismic acquisition designs	and reflection acquisition				refraction acquisition designs	
3	[C4, P3,A3] Students are able to understand the concept of 3-dimensional reflection seismic design and are capable of making 3-dimensional reflection seismic acquisition design	3-dimensional seismic acquisition design	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to make 3-dimensional reflection seismic acquisition design	"5% Task "
4	[C3, P3,A3] Students are able to understand the concepts of land seismic and sea seismic acquisition	Land and sea seismic acquisition	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-01	Able to understand of seismic exploration both land and sea environments	"5% Task " 15% Quiz
5	[C4, P3,A3] Students are able to understand the operational concepts	Seismic operational data acquisition	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to plan seismic data acquisition operations	"5% Task "

	of land seismic and						
	sea seismic						
	acquisition				<u> </u>		
6	[C4, P3,A3]	Seismic data	Direct Lecture,	TM: 1x(3x50")	Discussion;	Capable of	"5%
	Students are able to	signal analysis	Discussion;			analyzing	Task "
	understand the				Make a	seismic data	
	concept of seismic				summary	signals	
	data signal analysis						
	and are able to do						
	seismic data signal						
	processing						
7	[C3, P3,A3]	Processing	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do 2-	"5%
	Students are able to	reflection seismic	Discussion;			dimensional	Task "
	understand the	data			Make a	reflection	
	concept of seismic				summary	seismic data	
	data processing and				_	processing	
	are able to do it						
8			Mid Semester Evalua	ation			40%
9	[C3, P3,A3]	Seismic data pre-	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to analyze	"5%
	Students are able to	processing	Discussion;	,	,	data quality,	Task "
	understand the	processing	21500551511,		Make a	perform	1 00511
	concept of pre-				summary	geometric	
	processing of seismic				Summar y	corrections and	
	data and are able to					conduct seismic	
						data	
	analyze						
						conditioning	
						before further	
						processing	

10	[C3, P3,A3]	Filtering	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to filter	"5%
	Students are able to		Discussion;			seismic data	Task "
	understand the				Make a		
	concept of seismic				summary		
	data filtering and are						
	able to do it						
11	[C3, P3,A3]	Velocity analysis	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%
	Students are able to		Discussion;			seismic wave	Task "
	understand the				Make a	velocity analysis	
	concept of seismic				summary	and Normal	
	data speed analysis					Move Out	
	and are able to do					correction	
	speed analysis and do						
	the Normal Move						
	Out correction						
12	[C3, P3,A3]	Migrate seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to migrate	"5%
	Students are able to	data	Discussion;			seismic data	Task "
	understand the				Make a		
	concept of seismic				summary		
	data migration and						
	are able to process				Quiz-02		
	seismic data						
	migration						
13	[C3, P3,A3]	The latest data	Direct Lecture,	TM: 1x(3x50")	Discussion;	Understanding	"5%
	Students are able	acquisition and	Discussion;			the development	Task"
	understand the latest	processing			Make a	of the latest	
	developments in	technology			summary	seismic data	
	seismic data					processing	
						technology	

16			End Semester Evalu			existing paper	40%
	technology					the contents of	
	processing	sources				able to present	
	seismic data	from various				contents and are	
	developments in	Study of literature			summary	understand their	
	understand the latest		Discussion;		Make a	reviews and	
	Students are able to	Reference Paper	presentations,			to conduct paper	Task "
15	[C3, P3,A3]	Case Study	Group paper	TM: 1x(3x50")	Discussion;	Students are able	"5%
						existing papers	
	technology					the contents of	
	processing	sources				able to present	
	seismic data	from various				contents and are	
	developments in	Study of literature			summary	understand their	
	understand the latest		Discussion;		Make a	reviews and	
	Students are able to	Reference Paper	presentations,			to conduct paper	Task "
14	[C3, P3,A3]	Case Study	Group paper	TM: 1x(3x50")	Discussion;	Students are able	"5%
	technology						
	processing						

- 1. Vermeer, G.J.O., "Fundamentals of 3-D seismic survey design.", 2001
- 2. Costain, J. K. and Çoruh, C.,"Basic theory of exploration seismology.", Elsevier, 2004.
- 3. Chapman, C.H., "Fundamentals of seismic wave propagation.", Cambridge University Press, 2004.
- 4. Shearer, P.M., "Introduction to Seismology.", Cambridge University Press,2009

Program Study	Geophysical Engineering Department
Course	Digital Electronics
Cource Code	RF184626
Semester	3 (T:2,P:1) SKS
Credit	VI (Six)
Lecturer	Mariyanto, S.Si., M.T.

Study materials	Electricity, Mathematics, Prog	gamming	g e
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise
(LO)		1.7	independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.2	being able to show independent, quality, and measurable performance;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex

			engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
LO – Course	[C3,P3,A3] Students are able geophysics field.	to know	the theory of digital electronics also are able to demonstrate its application in the

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Students are able to	Understanding	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand the	the quantity	120 minute		Discussion	interact	
	system of quantities	system and the					
	and number systems	number system	Discussion				
	and their conversions	and its conversion	30 minute				
2	Students are able to	Characteristic of	Direct Lecture	150 minute	Presentation,	Task result	5%
	understand the	Logic Gates	120 minute		Discussion,		
	characteristic of logic				Task		
	gates		Discussion				
			30 minute				
3	Students are able to	How to work	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	understand how logic	logic gates	120 minute		Discussion	interact	
	gates work						
			Discussion				
			30 minute				
4	Students are able to	Boolean Algebra	Direct Lecture	150 minute	Presentation,	Quiz result	10%
	understand the	Theorem	120 minute		Discussion,		

	Boolean algebra				quiz		
	theorem		Discussion 30 minute				
5	Students are able to apply the	Simplification Method with the	Direct Lecture 120 minute	150 minute	Presentation, Discussion,	Practicum report	5%
	simplification method	Karnaugh Map	120 11111000		practicum		
	with the Karnaugh map		Discussion 30 minute				
6	Students are able to	Digital	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	apply digital arithmetic operations	Arithmetic Operations	120 minute		Discussion, practicum		
			Discussion 30 minute				
7	Students are able to	Digital	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	design digital arithmetic circuits	Arithmetic Circuits	120 minute		Discussion	interact	
	aritimetic circuits	Circuits	Discussion 30 minute				
8			Evaluasi Tengah Se	mester			25%
9	Students are able to understand the	The characteristic of flip-flops	Direct Lecture 120 minute	150 minute	Presentation, Discussion	Liveliness of interact	-
	characteristic of flip- flops		Discussion 30 minute				
10	Students are able to	How to work a	Direct Lecture	150 minute	Presentation,	Task result	5%
	understand how to work flip-flops	flip-flop	120 minute		Discussion, Task		
			Discussion 30 minute				

11	Students are able to	Counter Circuit	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	design a counter		120 minute		Discussion	interact	
	circuit						
			Discussion				
			30 minute				
12	Students are able to	Registrer Circuits	Direct Lecture	150 minute	Presentation,	Quiz result	10%
	design registrer		120 minute		Discussion,		
	circuits				quiz		
			Discussion				
			30 minute				
13	Students are able to	Decoder Circuits	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	design decoder		120 minute		Discussion,		
	circuits				practicum		
			Discussion				
			30 minute				
14	Students are able to	Encoder Circuits	Direct Lecture	150 minute	Presentation,	Practicum report	5%
	design encoder		120 minute		Discussion,		
	circuits				practicum		
			Discussion				
			30 minute				
15	Students are able to	Multiplexer	Direct Lecture	150 minute	Presentation,	Liveliness of	-
	design a multiplexer	Circuit	120 minute		Discussion	interact	
	circuit						
			Discussion				
			30 minute				
16			Evaluasi Akhir Ser	nester			25%

- 1. Ronald J. Tocci, Digital Systems Principles and Applications, Prentice-Hall int
- M. Morris Mano, Digital Design, Prentice-Hall
 Malvino Leach, Irwan Wijaya, Prinsip-Prinsip dan Penerapan Digital, Penerbit Erlangga
 Roger L. Tokheim, Elektronika Digital, Penerbit Erlangga
- 5. Jurnal tentang elektronika digital

Program Study	Geophysical Engineering Department
Course	Groundwater Exploration
Cource Code	RF184627
Semester	VI (Six)
Credit	3 (T:2 P:1) SKS
Lecturer	Dr. Dwa Desa Warnana, S.Si., M.Si.

Study materials	Geoelectricity, Geology		
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of
(LO)		1.7	expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;

Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
	3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical

			exploration activities by paying attention to geological rules and exploration purposes;
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	conditions that are important in the form	nation	pts and scope of work in groundwater exploration and mapping, geological of aquifer systems, physical and chemical properties of ground water to exploration techniques, mapping methods and water modeling soil

Program Study	Geophysical Engineering Department
Course Oil and Gas Geology	
Course Code	RF184628
Semester	VI (Six)
Credit	3 (T:3) SKS
Lecturer	Dr. Ir. Amien Widodo, M.S.

Study Materials	Geology, Mechanics, Res	servoir		
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;	
Outcome (LO)	General Skills		being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;	
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;	

	2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;
	3.3	understanding the theoretical concept of statistics to define the process complexity of a particular natural phenomena;
	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.13	understanding the insight of sustainable development in applied geophysical exploration methods and natural resource management in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;

		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO - Course	exploration. Students are	able to t	nderstand the fundamentals of oil and gas availability in the crust along with the principles of understand the concept of oil and gas formation and accumulation, petroleum systems, oil and regulation of oil and gas trade in Indonesia.

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8

1	[C4,P4,A4] Students are able to understand structural geology and Earth's constituent components(Earth Structure)	Introduction to Earth Structure [K1]: Earth Structure.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (Comprehension of Earth's components from the core to the crust and its relation to structural geology)	the accuracy of explaining	
2	[C4,P4,A4] Students are able to understand crust deformations (Divergent, Convergent, and Transform)	Introduction to Crust Deformation [K2]: Tectonic Deformation Part 1.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (types of tectonic crust movement); Assignment-K2: Resume on divergent, convergent, and transform process	Get to know of the plate movements	
3	[C4,P4,A4] Students are able to explain the difference of Brittle and Ductile	Introduction to Brittle and Ductile on plate crust [K3]: Brittle and Ductile.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (Brittle and Ductile); Assignment-K3:Latihan soal Brittle and Ductile Exercises, the difference of divergent, convergent, and transform	Get to know the difference of Brittle and Ductile and the outcome structures from both	

4	[C4,P4,A4] Students are able to analyse the kinematics and dynamics of plate movement	The concept of kinematics and dynamics in structural geology [K4]: Force Kinematics.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (Dynamics of Tectonic Plate); Assignment-K4: Resume of Plate Movement Kinematics	Get to know the various types of plate movement from the dynamics of its kinematic force	
5	[C4,P4,A4] Students are able to understand carbonate sedimentary rock	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate sedimentary rock.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (carbonate sedimentary rock); Quiz-K5: Clastic Rock and Carbonate Rocks (components)	Get to know of carbonate rocks component	
6	[C4,P4,A4] Students are able to understand the genesis of carbonate rocks (differences in clastic rocks genesis)	The concept of sedimentary stratigraphy on carbonate sedimentary rock [K5]: Introduction to carbonate rocks genesis.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (plate dynamics in geophysics); Assignment-K6: carbonate rocks genesis exercises	Get to know the genesis of carbonate rocks	

7	[C4,P4,A4] Students are able to understand the genesis of sedimentary rocks, the components, textures, structures, minerals, as well as explain the depositional environment and its classification	The concept of sedimentary stratigraphy on clastic and non-clastic rocks [K7]: Resume of sedimentary stratigraphy on clastic and non-clastic rocks.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (clastic and non-clastic rocks); Assignment-K7: differences between clastic and non-clastic rocks exercise	Get to know the differences between clastic and non-clastic rocks	
8			Mid Semester Evalua	ation			30%
9	[C4,P4,A4] Students are able to understand about stratigraphy and the laws of stratigraphy	Introduction to sedimentary stratigraphy, the principle of stratigraphy [K9]: Introduction to the principle of stratigraphy.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion (the principle of stratigraphy);	Get to know the laws of stratigraphy	
10	[C4,P4,A4] Students are able to understand the differences in stratigraphic science (lithostratigraphy, chronostratigraphy, biostratigraphy)	Introduction to lithostratigraphy, chronostratigraphy, and biostratigraphy [K10]: Introduction to advanced stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion (comprehensive knowledge in stratigraphy); Assignment-K10: lithostratigraphy, chronostratigraphy, and biostratigraphy exercises	the accuracy of explaining	5%

11	[C4,P4,A4] Students are able to analyse the correlation of rocks	The basic concept of sedimentary rocks correlations (understand datum/keybed) [K11]: rocks correlation.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of comparing and explaining	
12	[C4,P4,A4] Students are able to analyse the correlation of rocks (lithocorrelation, chronocorrelation, and biocorrelation)	Comprehension of the differences in lithocorrelation, chronocorrelation [K12]: lithocorrelation, and biocorrelation, chronocorrelation, and biocorrelation, and biocorrelation.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion Quiz-K12: Stratigraphy and Correlation	the accuracy of explaining	5%
13	[C4,P4,A4] Students are able to read a regional stratigraphy and its use	The basic concept of regional stratigraphy reading [K13]:Regional geology map.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4x60")]	Discussion Assignment -K13: Practice on simulating the flow in the earth with program language	the accuracy of explaining	10%
14	[C4,P4,A4] Students are able to understand the sequence stratigraphy	The concept of sequence stratigraphy [K14]: Introduction to Sequence Stratigraphy.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	

15	[C4,P4,A4] Students are	Comprehensive	Discussion	TM:	Discussion	the accuracy of	
	able to understand a	understanding of		1x(3x50")	Assignment-K15:	explaining	
	stratigraphy, correlation,	sedimentary		[BT+BM:2x(Presentation and		
	and sequence of rocks	stratigraphy		4x60")]	resume about		
		[K15] : Journal.ppt			sedimentary		
					stratigraphy		
16	End Semester Evaluation						

- 1. Norman J.Hyne., 2001.Nontechnical Guide To Petroleum Geology,Exploration.,Drilling and Production 2nd edition., Pennwell Book
- 2. North F.K (1985), Petroleum Geology Allen & Unwin. London.Sydney
- 3. Magoon B.and Dow G.AAPG memoir no 60 1994. The Petroleum Systems from Source to Trap
- 4. Koesoemadinata. 1980. Geologi Minyak dan Gas Bumi. ITB.Bandung

Program Study	Geophysical Engineering Department
Course	Geotourism
Course Code	RF184629
Semester	VI (Six)
Credit	3 (T:2,P:1) SKS
Lecturer	1.Dr. Ir. Amien Widodo, M.S. 2.Juan Pandu Gya Nur Rochman, S.Si., M.T.

Study Materials	Geology		
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
Outcome (LO)	General Skills	or implementa	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;

		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of natural science and the principles of applying mathematical engineering as the basic methodology of geophysics exploration approach on a specific natural phenomena in general;
		3.6	understanding the complete operational insight related to geophysical engineering technology
		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
LO - Course			able to analyse problems and geological potentials aspect which applicable for geotourism purposes onal purpose or involve their surroundings including entrepreneurship purpose commercially.

Weel	The Expected of	Learning Subject	Learning	Time Estimation	Student's	Criteria and	Weigh
	Sub LO -		Methods		Learning	Indicators	t (%)
	Course				Experience		

1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand the concept of geotourism and its problems	Introduction to Geotourism as well as its development, problems, and obstacles [K1]: Introduction to Geotourism.ppt	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
2	[C4,P4,A4] Students are able to analyse the aspect of geology for tourism	Introduction to geological aspects and examples of its development [K2]: The aspects of geology and its development.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
3	[C4,P4,A4] Students are able to analyse the aspect of geology for tourism	The forms, processes and activities of volcanoes, volcanic landscapes and its interesting aspects [K3]: Volcanoes Geotourism.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion	the accuracy of explaining	

4	[C4,P4,A4] Students are able to analyse the aspect of geology for tourism	The forms, processes and activities of karst, karst landscapes and its interesting aspects [K3]: Karst Geotourism.ppt	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
5	[C4,P4,A4] Students are able to analyse the aspect of stratigraphy and structural geology for tourism	Sedimentation profile, tectonics, and its interesting aspects [K5]: sedimentation and tectonics.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
6	[C4,P4,A4] Students are able to analyse rivers and beaches for tourism	The systems of rivers, lakes, beaches, and sea	Direct Lecture, Discussion;	TM: 1x(3x50")	Diskusi Quiz-K6	the accuracy of explaining	10%
7	[C4,P4,A4] Students are able to analyse the aspects of geopark and its planning	Geopark UNESCO, Geotrack, promotion and socialization	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	the accuracy of explaining	
8			Mid Seme	ster Evaluation			30%

9	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	Geological Aspects of East Java	Discussion	[BT+BM:2x(3x60")]	Discussion	the accuracy of explaining	
10	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	Geological Aspects of East Java	Discussion	[BT+BM:2x(3x60")]	Diskusi Tugas-K10 :Resume Geowisata Jawa Timur	the accuracy of explaining	5%
11	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	Determination of rare, interesting, historical, and preservable geological aspects in East Java	Discussion	[BT+BM:2x(3x60")]	Presentation	the accuracy of explaining	10%
12	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	East Java geotourism potential site visit -Mud Volcano -Sites	Field Discussion	TM: 1x(3x50") [BT+BM:2x(3x60")]	Discussion Assignment-K12: East Java Geotourism Resume	the accuracy of explaining	5%

13	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	East Java geotourism potential site visit -Post-mining -Geothermal -Volcanoes	Field Discussion	TM: 1x(3x50") [BT+BM:2x(3x60")]	Discussion Assignment-K13: East Java Geotourism Resume	the accuracy of explaining	5%
14	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	East Java geotourism potential site visit -Beaches, Rivers, Lakes -Karst	Field Discussion	TM: 1x(3x50") [BT+BM:2x(3x60")]	Discussion Assignment-K13: East Java Geotourism Resume	the accuracy of explaining	5%
15	[C4,P4,A4] Students are able to analyse the aspects of geotourism, do the simulation and planning	Geotourism planning: Promotion, mapping, geotourism management planning	Guest Lecture	TM: 1x(3x50")	Discussion	the accuracy of explaining	
16		End Semester Evaluation					

- 1. Gray. M., 2005. Geodiversity and Geoconservation: What, Why, and How? Geodiversity & Geoconservation. The George Wright Forum, V. 22 No.3, 12 hal.
- 2. UNESCO, 2007, Guidelines and criteria for National Geoparks seeking UNESCO's assistance to joint the GlobalGeoparks Network.

- 3. Brahmantyo, B., 2006. Klasifikasi Geomorfologi. Laboratorium Geomorfologi Institut Teknologi Bandung, Bandung
- $4.\ Bemmelen,\ R.W.\ van,\ 1949,\ Geology\ of\ Indonesia,\ Vol.\ IA,\ Martinus\ Nijhoff,\ The\ Hague,\ Netherland.\ Bennet,\ M.R.\ \&\ P.\ Doyle,\ 1996.\ In:$
- M.R. Bennet, P. Doyle, J.G. Larwood & C.D. Prosser (Eds.). Geology on your doorstep. Geological Society London, 3-10.
- 5. Jurnal dan laporan studi kasus

Program Study	Geophysical Engineering Department
Course	Geophysical Instrumentation
Course Code	RF184630
Semester	3 (T:2, R:1) SKS
Credit	VI (Six)
Lecturer	

Study Materials	Electricity, Mathem	natics,	Programming, Sensors, Geophysical instrumentation
	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;

Learning Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;	
		2.2	being able to show independent, quality, and measurable performance,	
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;	
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;	
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;	
LO - Course	[C3, P3, A3] Students are able to apply the work principle of instrumentation and application of electronic instrumentation related to geophysical methods.			

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8

1	Students are able to understand the basic concept of instrumentation system	The basic concept of instrumentation system	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Activeness, interaction	-
2	Students are able to understand the concept of OP AMP (Operational Amplifier)	Op Amp (Operational Amplifier)	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, assignment	Assignment result	5%
3	Students are able to understand the application of Op-amp for signal filtering	Op Amp (Operational Amplifier) for signal filtering	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Activeness, interaction	-
4	Students are able to understand the application of Op-amp for voltage and current adjustment	Op Amp (Operational Amplifier) for voltage and current adjustment	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, quiz	Quiz result	10%
5	Students are able to understand the principle of sensor and transducer application	Sensor dan transducer	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, practicum	Practicum result	5%

6	Students are able to understand the application of sensor and transducer	sensor and transducer 120 minutes discussion,		Practicum result	5%		
7	Students are able to understand the application of Op-Amp and sensor	The application of Op Amp and sensor			Activeness, interaction	-	
8			Mid Semester Evalu	ation			25%
9	Students are able to understand the geoelectrical instrumentation	Geolectrical instrumentation	Direct Lecture 150 minutes Presentation, discussion Activeness, interaction Discussion 30 minutes		, and the second	-	
10	Students are able to understand the seismic instrumentation	Seismic instrumentation	Direct Lecture 120 minutes Discussion 30 minutes 150 minutes Presentation, discussion, assignment Presentation, discussion, assignment		Assignment result	5%	
11	Students are able to understand the magnetic instrumentation	Magnetic instrumentation	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Activeness, interaction	-

12	Students are able to understand the electromagnetic instrumentation	Electromagnetic instrumentation	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, quiz	Quiz result	10%
13	Students are able to understand the gravitymetric instrumentation	Gravitymetric instrumentation	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, practicum	Practicum report	5%
14	Students are able to understand the laboratory equipment instrumentation	laboratory equipment instrumentation	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion, practicum	Practicum report	5%
15	Students are able to understand the laboratory equipment instrumentation	laboratory equipment instrumentation	Direct Lecture 120 minutes Discussion 30 minutes	150 minutes	Presentation, discussion	Activeness, interaction	-
16	End Semester Evaluation 25%					25%	

Program Study	Geophysical Engineering Department
Course	Exploration Management
Cource Code	RF184631
Semester	VI (Six)
Credit	3 (T:3) SKS
Lecturer	Dr. Ayi Syaeful Bahri, S.Si., M.T.

Study materials	Geophysical exploration management concepts and functions: HR management functions, organization concepts and
	systems of exploration, arranging and managing teamwork, leadership and Human Resources, functions and planning
	processes; Planning techniques and methods; Assessing the feasibility of exploration / activities; Special Topic.

Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise
(LO)			independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the
			context of development or implementation of science and technology that
			concerns and implements the value of humanities in accordance with their area of
			expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise
			and evaluate the work completion assigned to the worker under his or her
			responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her
			responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering
			principles, and engineering design methods required to analyse and design
			system, process, product, or component in geophysics engineering in deep;
		3.6	understanding the complete operational knowledge related to the field of
			geophysical engineering technology;
		3.10	understanding the concepts and principle of environmental preservation in
			general from geophysical engineering activities;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering
			principles into procedures, processes, systems or methodologies of geophysical
			engineering, to create or modify models in solving complex engineering problems
			in the fields of environment, settlement, marine and energy with the concept of
			sustainable development;
		4.2	being able to find the source of engineering problems through the process of
			investigation, analysis, interpretation of data and information based on the
			principles of geophysical engineering;
		4.10	being able to organize the data and present it again by utilizing information
			technology that suits their needs;

LO – Course	[C4,P4,A4] Able to applied and analyze a geophysical exploration activity with the aim of sustainability and efficiency
	(K3L) in exploration activities.

Week	The Expected of Sub	Learning	Learning Methods	Time	Student's	Criteria and	Weight
	LO - Course	Subject		Estimation	Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4]	Introduction of	Introductory Lecture,	TM:	Discussion;	Get to know	5%
	[Conceptual	the Method,	contract and	2x(4x50")	(applied and	the basic	
	knowledge, analyze]	Introduction of	brainstorming;		development of	concepts of	
	Students are able to	Exploration			Modern	management	
	understand the Basic	Management			Management);		
	Concepts of	[K1]: Introduction			Task-K1: Make a		
	Exploration	of General			resume about		
	Management	Management			basics of field		
					management		
2	[C4,P4,A4][Conceptual	The Basic	Direct Lecture,	TM:	Discussion;	Accuracy of	
	knowledge, analyze]:	Concepts of	Discussion;	2x(4x50");	(Basic concepts	explanation	
	Students are able to	Exploration			and principles of		
	understand the Basic	Management			field		
	Concepts of				management);		
	Exploration						
	Management						
3	[C4,P4,A4][Conceptual	The concepts and	Direct Lecture,	TM:	Discussion; (HR	The accuracy	
	knowledge, analyze]:	functions of HR	Discussion;	2x(4x50");	management	of comparing	
	Mastering the concepts	management			concepts and	and explaining	
	and functions of HR				functions);		
	management						

4	[C4,P4,A4][Conceptual knowledge, analyze]:	The concepts and functions of HR	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; (HR management	The accuracy of comparing	
	Mastering the concepts and functions of HR management	management			concepts and functions);	and explaining	
5	[C4,P4,A4][Conceptual knowledge, analyze]: Being able to explain the theoretical concepts, HR management functions in the field	The concepts and functions of HR management	Direct Lecture, Discussion;	TM: 2x(4x50");	Presentation (case study) K2: The task of making a resume about the HR management function and presenting it (task per group one case study)	The accuracy of comparing and explaining	20%
6	[C4,P4,A4][Conceptual knowledge, analyze]: Being able to explain the theoretical concepts, HR management functions in the field	The concepts and functions of HR management	Direct Lecture, Discussion;	TM: 2x(4x50");	Presentation (case study)	The accuracy of comparing and explaining	
7	[C4,P4,A4][Procedural knowledge, analyze]: Mastering the concept of geophysical exploration organization and management system	Geophysical exploration organization and management system	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; geophysical exploration organization and management system	The accuracy of comparing and explaining	
8			Mid Semester Evalua	ntion			20%

9	[C4,P4,A4][Procedural knowledge, analyze]: Mastering the concepts, principles and techniques of 1D and 2D modeling in the resistivity method	Geophysical exploration organization and management system	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; geophysical exploration organization and management system	The accuracy of comparing and explaining
10	[C4,P4,A4][Conceptual knowledge, analyze]: Mastering in compiling and managing teamwork	Organize and manage teamwork	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; Arrange and manage work teams	The accuracy of comparing and explaining
11	[C4,P4,A4][Procedural knowledge, analyze]: Mastering the concept and application of leadership and Human Resources	The concept and application of leadership and Human Resources	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; Leadership and human resources	The accuracy of comparing and explaining
12	[C4,P4,A4][Procedural knowledge, analyze]: Mastering the functions and planning processes of geophysical exploration	The concept and application of the geophysical exploration planning process	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; the applied of the geophysical exploration planning process	The accuracy of comparing and explaining
13	[C4,P4,A4][Procedural knowledge, Analyze]:	The concept and application of geophysical	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; the applied of geophysical	The accuracy of comparing and explaining

	Being able to know the worthiness of geophysical exploration activities	exploration activities			exploration activities		
14	[C4,P4,A4][Procedural knowledge, analyze]: Being able to know the worthiness of geophysical exploration activities	The concept and application of geophysical exploration activities	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; the applied of geophysical exploration activities Task K3: make a project per person (individual assignment) and present	The accuracy of comparing and explaining	25%
15	[C4,P4,A4][Procedural knowledge, analyze]: Being able to know the worthiness of geophysical exploration activities	The concept and application of geophysical exploration activities	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; the applied of geophysical exploration activities Task K3: make a project per person (individual assignment) and present	The accuracy of comparing and explaining	
16		1	End Semester Evalua	tion	1		30%

- Brown W, Exploration in Management, a Pelican Book Publisher
 Soeharto, Iman., Manajemen proyek: Dari Konseptual sampai Operasional, Erlangga, 1997.
- 3. Jurnal dan laporan studi kasus

Program Study	Geophysical Engineering Department			
Course	Geographic Information Systems			
Course Code	RF184632			

Semester	VI (Six)
Credit	3 (Three) SKS
Lecturer	M.Singgih Purwanto, S.Si., M.T.

Study Materials	Mapping, Geolog	у	
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
	_	2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
	Specific Skills 4.11 capable of reading maps and satellite imagery, determining map orientation in the compass and satellite data; and		capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
LO - Course	[C3,P3,A3] Students are able to apply the concept and application of GIS, able to develop GIS and manage spatial data using GIS technology.		

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	Students are able to understand the learning subjects in this lecture, Students are able to explain the scope of Geographic Information Systems in Geophysics	 GIS definition GIS concept Application of GIS in Geophysics 	Direct Lecture Discussion	120 minutes 30 minutes	Discussion	Activeness in Discussion	
2 - 3	Students are able to understand The concept of Coordinate Systems and Transformation	 2D and 3D Coordinate Systems Map Projection: UTM, Mecartor 	Direct Lecture Discussion	50 minutes 100 minutes	Presentation	1.Presentation layout format 2. Material Comprehension	5 % 10 %
4 - 5	Students are able to understand the data structure in GIS	Spatial Data and its typesData Attributes and its types	Direct Lecture Assignment	150 minutes 150 minutes	Assignment: getting example of spatial data and attributes	Suitability of the task with the results	5 %
6	Students are able to understand the input data in GIS. DEM data, and spatial operations	Data from satellite imageData topographic map	Direct Lecture Discussion	120 minutes 30 minutes	Discussion	Activeness in Discussion	

7	Students are able to explain map visualisation based on cartographic rules	 Scales Legends Map Format	Direct Lecture Assignment	150 minutes 150 minutes	Cartographic mapping	Suitability of the task with the results	5 %
8		I	Mid Semester Evalu	ation			25 %
9 - 10	Students are able to explain the data quality	 Vector Data Raster Data	Direct Lecture Discussion	120 minutes 30 minutes	Discussion	Activeness in Discussion	
11 - 12	Students are able to conduct a simple analysis in GIS	Spatial data analysisVisual data analysis	Direct Lecture Discussion	120 minutes 30 minutes	Discussion	Activeness in Discussion	
13 - 14	Students are able to explain the concept of simple modelling in GIS	• correlate spatial data with data attribute	Direct Lecture Assignment	150 minutes	Cartographic mapping	Suitability of the task with the results	5 %
15	Students are able to make a simple map using GIS in Geophysics field	• Geothermal manifestations map	Presentation	150 minutes	Geothermal manifestation mapping	1.Presentation layout format 2. Material Comprehension 3.Suitability of the task with the results	15 %
16	End Semester Evaluation						

- 1. Puntodewo, Atie, Dkk.2003. Sitem Informasi Geografi Untuk Pengelolaan SDA. Center for International Forestry Research
- 2. Gorr, W. L. dan K. S. Kurland, 2008, GIS Tutorial Basic Workbook, ESRI Press.
- 3. Rolf, A. (editor), 2001, Principles of Geographic Information Systems, ITC Educational Textbook Series, ITC Enschede, The Netherlands.
- 4. Christman, N., 1997, Exploring Geographic Information Systems, John Wiley and Sons, New York.

Program Study	Geophysical Engineering Department
Course	Applied Seismology
Cource Code	RF184633
Semester	VI (Six)
Credit	3 (T:3) SKS
Lecturer	Firman Syaifuddin, S.Si., M.T.

Study materials	Wave, Geology
-----------------	---------------

Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyze and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
		3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
		3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyze and design system, process, product, or component in geophysics engineering in deep;
		3.7	understanding the factual insights and technology application methods; codes and national/international standards as well as the

		regulations in force in his/her work area to carry out geophysical engineering technology work in depth;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;

	4.	.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	- - - - - - - - - -		ngineering field, being able to make seismic zoning based on nole seismic survey in determining Vs30. Being able to classify soil types

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning Experience	Indicators	(%)
1	2	3	4	5	6	7	8
1	[C3, P3,A3]	1. Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Understanding	"5%
	Understanding what	Lecture:	contract and			what will be	Task "
	will be learned in this	• Semester	brainstorming;		Make a	learned in this	
	lecture.	Learning Plans			summary	lecture	
	Understanding the	• College					
	basic foundations of	Contracts				Being able to	
	applied seismology.	• Scoring system				explain the basic	
		2. Review				principles of	
		seismology				applied	
		courses				seismology	
2	[C3, P3,A3]	Ground Motion	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Understanding the		Discussion;			explain the	Task "
	concept of Ground				Make a	concept of	
	Motion caused by				summary	Ground Motion	
	earthquake events					caused by	
						earthquake	
						events	

3	[C3, P3,A3]	Earthquake	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Understand the	acceleration	Discussion;			explain the	Task "
	concept of earthquake				Make a	concept of	
	acceleration and the				summary	earthquake	
	effects caused during					acceleration and	
	an earthquake					the effects	
						caused during an	
						earthquake	
4	[C3, P3,A3]	Seismic Zoning	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Knowing the concept	and microzonasi	Discussion;			explain the	Task "
	of Seismic Zoning				Make a	concepts of	
	and microzonation				summary	Seismic Zoning	15%
					Quiz-01	and	Quiz
						microzonation	
5	[C3, P3,A3]	Local land effect	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Knowing the concept		Discussion;			explain the	Task "
	of the local land				Make a	concept of the	
	effect on the				summary	local land effect	
	destructive force					on the	
	caused by earthquake					destructive force	
	events					caused by	
						earthquake	
						events	
6	[C3, P3,A3]	Classification of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to classify	"5%
	Able to classify soil	soil types	Discussion;			soil types related	Task "
	types related to				Make a	to seismic	
	seismic activities				summary	activities	
7	[C3, P3,A3]	Force due to	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
		earthquake	Discussion;			explain the	Task "

	Able to explain the impact of an earthquake				Make a summary	impact of an earthquake	
8			Mid Semester E			_	40%
9	[C3, P3, A3]	Probabilistic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the concept	Seismic Hazard	Discussion;			concept and	Task "
	and conducting	Analysis			Make a	conducting	
	Probabilistic Seismic				summary	Probabilistic	
	Hazard Analysis					Seismic Hazard	
						Analysis	
10	[C3, P3,A3]	Deterministic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the concept	Seismic Hazard	Discussion;			concept and	Task "
	and conducting	Analysis			Make a	conducting	
	Deterministic				summary	Deterministic	
	Seismic Hazard					Seismic Hazard	
	Analysis					Analysis	
11	[C3, P3,A3]	Microtremor	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the		Discussion;			concepts and be	Task "
	concepts of				Make a	able to	
	measurement,				summary	measurements,	
	processing and				·	processing and	
	interpretation of					interpretation of	
	microtremor data					microtremor	
						data	
12	[C3, P3,A3]	Downhole	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the concept	seismic survey	Discussion;			concept of	Task "
	of measuring,					measuring,	

	processing and				Make a	processing and			
	interpreting				summary	interpreting			
	Downhole seismic				Quiz-02	Downhole			
	survey data					seismic survey			
						data			
13	[C3, P3,A3]	Interpretation of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to	"5%		
	Able to Interpretation	geotechnical data	Discussion;			Interpretation of	Task "		
	of geotechnical data				Make a	geotechnical			
					summary	data			
14	[C3, P3,A3]	Seismic design	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%		
	Knowing the seismic		Discussion;			the seismic	Task "		
	design concept of				Make a	design concept			
	earthquake resistant				summary	of earthquake			
	buildings					resistant			
						buildings			
15	[C3, P3,A3]	Earthquake	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to analyze	"5%		
	Being able to analyze	disaster	Discussion;			and prepare	Task "		
	and prepare	mitigation			Make a	earthquake			
	earthquake disaster				summary	disaster			
	mitigation documents					mitigation			
						documents			
16			End Semester Eval	End Semester Evaluation					

- 1. Maugeri, M, 2014, Earthquake Geotechnical Engineering Design, GEOTECHNICAL, GEOLOGICAL AND EARTHQUAKE ENGINEERING, Volume 28, Springer, London.
- 2. AKKAR, S., 2011, EARTHQUAKE DATA IN ENGINEERING SEISMOLOGY GEOTECHNICAL, GEOLOGICAL AND EARTHQUAKE ENGINEERING, Volume 14, Springer, London.
- 3. Yoshida, N., 2015, Seismic Ground Response Analysis, GEOTECHNICAL, GEOLOGICAL AND EARTHQUAKE ENGINEERING, Volume 36, Springer, London

Program Study	eophysical Engineering Department			
Course	othermal Exploration			
Cource Code	RF184734			
Semester	VII (Seven)			
Credit	3 (T:3) SKS			
Lecturer	Dr. Widya Utama. DEA			

Study materials	Geophysics, Geology, Geoche	mistry	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
	2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;	
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;

	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
	3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;

	4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
	4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	economic analysis and legal study of the Students are able to do exploratory we a simple conceptual model of a geo	understand the total geothermal project work. Students are able to make a simple the development geothermal potential in the context of national energy empowerment. Tork order in the study of the geothermal potential area. Students are able to construct thermal reservoir and evaluate the reservoir model also present it in the form of a that is usually used for completing IUP bidding documents at the Ministry of Energy

Week	The Expected of Sub	Learning Subject	Learning Methods	Time	Student's	Criteria and	Weight
	LO - Course			Estimation	Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4]	Introduction to the EM	Introductory	TM: 2x(4x50")	Discussion,		
	Students are able to	Method, the	Lecture, contract			Get to know EM	
	understand the	development of the EM	and			application in	
			brainstorming;			general	

	fundamental of	method and general				
	Geothermal.	applications				
		K1: introduction to EM				
		methods and their				
		development.ppt				
2	[C4,P4,A4]	Basic principles	Direct Lecture,	TM: 1x(4x50");	Discussion,	the accuracy of
	Students are able to	EM methods,	Discussion;			explaining
	explain the	Maxwell's Equation				
	importance of risk	K2: Electric Field				
	analysis of the	Equation, Magnetic				
	development	Field and Maxwell				
	geothermal energy in	Equation				
	an area.					
3	[C4,P4,A4]	Processing geological	Direct Lecture,	TM: 1x(4x50");	Discussion,	the accuracy of
	Students are able to	exploration data for	Discussion;			explaining
	explain the processing	preliminary studies of				
	of geological	geothermal potential				
	exploration data for	areas				
	preliminary studies of					
	geothermal potential					
	areas					
4	[C4,P4,A4]	Processing geological	Direct Lecture,	TM: 1x(4x50");	Discussion,	the accuracy of
	Students are able to	exploration data for	Discussion;			explaining
	explain the processing	preliminary studies of				
	of geological	geothermal potential				
	exploration data for	areas				
	preliminary studies of					

	geothermal potential						
	areas						
5	[C4,P4,A4] Students are able to apply geophysical exploration data processing to delineation of potential geothermal	Processing geophysical exploration data for delineation of potential geothermal prospects	Direct Lecture, Discussion;	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Practicum	The accuracy of applying the suitable filter to improve the data quality	10%
6	prospects [C4,P4,A4] Students are able to apply geophysical exploration data processing to delineation of potential geothermal prospects	Processing geophysical exploration data for delineation of potential geothermal prospects	Direct Lecture, Discussion;	TM: 1x(4x50")	Discussion,	the accuracy of explaining and comparing	10%
7	[C4,P4,A4] Students are able to explain the study of geology data	Study of geology data	Direct Lecture, Discussion;	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Task 6: make a resume paper using the CSAMT and AMT methods – (Practicum)	The accuracy of applying the suitable filter to improve the data quality	10%
8			Mid Semester Evalua	ation			30%
9	[C4,P4,A4]	Study of geology data	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining	

	Students are able to explain the study of						
	geology data						
10	[C4,P4,A4] Students are able to explain geothermal geophysics	Students are able to explain geothermal geophysics	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining	
11	[C4,P4,A4] Students are able to explain geothermal geophysics	Students are able to explain geothermal geophysics	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion, Journal Resume	the accuracy of explaining	10%
12	[C4,P4,A4] Students are able to explain the geochemistry for the geothermal potential prospect area.	Geochemistry for the geothermal potential prospect area.	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining	
13	[C4,P4,A4] Students are able to explain the geochemistry for the geothermal potential prospect area.	Geochemistry for the geothermal potential prospect area.	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion, Practicum	the accuracy of explaining	
14	[C4,P4,A4] Students are able to make an integrative study report for the	Making of an integrative study report on the prospects for the geothermal potential area.	Practicum	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Discussion, Practicum	the accuracy of explaining	

16	geothermal potential prospects area.	area End Semester Eva	aluation		Report		30%
	make an integrative study report for the	on the prospects for the geothermal potential		60")]			
	Students are able to	integrative study report		[BT+BM:2x(4x	Practicum	explaining	
15	prospects area. [C4,P4,A4]	Making of an	Practicum	TM: 1x(4x50");	Discussion,	the accuracy of	
	geothermal potential						

- 1. Handbook of Geothermal Energy, Editors: Edwards, L.M., Chilingar, G.V. et al., Gulf Publishing Company, 1982, 613 pp.
- 2. Goff, F., Janik, C.J. (2000), Geothermal Systems, Editors: Haraldur Sigurdsson, Encyclopedia of Volcanoes, Academic Press, pp. 817-834

Program Study	Geophysical Engineering Department
Course	Geotomography
Cource Code	RF184735
Semester	VII (Seven)
Credit	4 (Four) SKS
Lecturer	Juan Pandu Gya Nur Rochman, S.Si., M.T.

Study materials	Programming, Geophysics		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills 2.1 2.7	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise; being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;	
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from

		data retrieval, processing, interpretation and modeling to solve the problems of
		geophysics engineering in deep;
	3.6	understanding the complete operational knowledge related to the field of
	3.0	geophysical engineering technology;
	2.10	understanding the concepts and principle of environmental preservation in
	3.10	general from geophysical engineering activities;
	2.12	understanding the concept, principle, workshop procedure, studio and
	3.12	laboratory activities, and Health and Safety Environment (HSE) in general;
Specific Skills	4.4	being able to apply the principles of mathematics, science and engineering
specific simis	4.1	principles into procedures, processes, systems or methodologies of
		geophysical engineering, to create or modify models in solving complex
		engineering problems in the fields of environment, settlement, marine and
		energy with the concept of sustainable development;
-		energy with the concept of sustamable development,
	4.2	being able to find the source of engineering problems through the process of
		investigation, analysis, interpretation of data and information based on the
		principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and
		analysis tools based on appropriate information and computing technologies to
		perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through
		testing, measurement of objects, work, analysis, interpretation of data in
		accordance with procedures and standards of geophysical exploration activities
		by paying attention to geological rules and exploration purposes;

	4.	1.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
	4.	.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
	4.	.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
	4.		being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	[C4, P3,A3] Students are able to a create simple tomography program		the basic concepts of seismic and electric tomography imaging technology also

Week	The Expected of Sub	Learning Subject	Learning	Assessment		
	LO - Course		Methods	Criteria and	Student's Learning	Weight
				Indicators	Experience	(%)
1-2	Knowing what will be learned in this lecture, Being able to explain the scope of Geotomography studies	 Geotomography concept overview Developmental History The application 	Lecture 120 minutes Discussion 30 minutes	 Liveliness in discussion Task completion Match the contents of the task 	Task 1: Make a college resume 220 minutes Assignments and independent learning Response:	10%

3-4	Understanding the basic concepts of the Seismic Tomography Method	 Metode Seismik Tomografi Overview Parameterisasi Model	Lecture 240 minutes Discussion 60 minutes	 Liveliness in discussion Task completion Match the contents of the task 	Make a resume for chapter 1 of the reference Task 2: Make a college resume 220 minutes Assignments and independent learning
5	Able to understand the theoretical concepts of the Transformation Technique Method, Fourier Projection Theorem, Back Projection and theorem Series Expansion Technique Method	 Transformation Techniques Fourier theorem Back Projection Method of Series Expansion 	Lecture 240 minutes Discussion 60 minutes	 Liveliness in discussion Task completion Match the contents of the task 	Task 3: Make a college resume 220 minutes Assignments and independent learning Quiz 1:
8		 Ray Tracing Bending Method Full Wave Equation (Finite difference and finite element) (Formative Evaluation-Evaluation) 	Lecture 240 minutes Discussion 60 minutes	 Liveliness in discussion Task completion Match the contents of the task 	Task 4: Make a college resume 220 minutes Assignments and independent learning Forward Modeling Practicum earning process based on the assessment
9-10	that has been done) Understanding the fundamental of inversion in Seismic Tomography.	Seismic Inversion Tomography	Lecture 240 minutes Discussion	Liveliness in discussionTask completion	Task 6: Make a college resume 220 minutes

	T			1		
		 Inversion of the Series Expansion Method 	60 minutes	•	Match the contents of the task	Assignments and independent learning
		(SVD and Gauss Newton) • Back Projection				
		Technique (BPT)				
11-12	Understanding the SIRT method (Simultaneous Iterative Reconstruction Technique) and Algebraic Reconstruction Technique (ART) method.	 SIRT (Simultaneous Iterative Reconstruction Technique) Algebraic Reconstruction Technique (ART) 	Lecture 240 minutes Discussion 60 minutes	•	Liveliness in discussion Task completion Match the contents of the task	Task 7: Make a college resume 220 minutes Assignments and independent learning
13-14	Being able to apply the Seismic Tomography for global and regional scale.	Application of Seismic Tomography for depiction of a subduction zone	Lecture 240 minutes Discussion 60 minutes	•	Liveliness in discussion Task completion Match the contents of the task	Task 8: Make a college resume 220 minutes Assignments and independent learning Quiz 2:
15	Being able to understand the application of tomographic in Cross Hole Seismic, Electrical Resistance Tomography (ERT), VLF (Very Low Frequency)	 Tomography ERT (Electrical Resistivity Tomography) Cross hole tomography of the tunnel case Radar Tomography 	Students present the results of a literature study 300 minutes	•	Submission of material Mastery of material Active in discussion	Presentation
16	Final Semeste	er Evaluation (Evaluation int	ended to find o	ut th	ne final achievement o	f student learning outcomes)

- 1. Wang, Y. "Seismic Amplitude Inversion in Reflection Tomography", Elsevier science, 2003.
- 2. Iyer H.M. and Hirahara, K. (Ed.), 1993. Seismic Tomography: Theory and Practice. Chapman & Hall, London.
- 3. Nolet, G. (Ed.), 1987. Seismic Tomography with applications in global seismology and exploration geophysics. D. Reidel Publishing Company, Dordrecht.

Program Study	Geophysical Engineering Department
Course	Integrated Field Survey
Course Code	RF184736
Semester	VII (Seven)
Credit	4 (Four) SKS
Lecturer	

Study Materials	Geology, Geophys	ics	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;

	Specific Skills	4.5	being able to design a system, process, and component by analytical approach and technical standard, performance aspect, reliability, simplicity of application, and sustainability consideration, also take heed on economic factors, public health and safety, cultural, social and environment;			
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;			
LO - Course	[C4,P4,A4] Students are able to compare exploration methods and integrate as well as conduct the methods in geologeophysical field survey.					

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimati on	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1- 2	Students are able to explain the resistivity 2D	 Determine resistivity value distribution in research area Determine the lithology of research area. 	Practicum	1 x 50' 3 x 50'	Being able to Determine resistivity value distribution and the lithology in research area.	1.Subject comprehension 2.Suitability of the task and the result	10 %

3 - 4	Students are able to explain about Vertical Electrical Sounding (VES)	 Determine resistivity value distribution in research area Determine the lithology of research area. 	Practicum	1 x 50' 3 x 50'	Being able to Determine resistivity value distribution and the lithology in research area.	1.Subject comprehension 2.Suitability of the task and the result	10%
5- 6	Students are able to explain the magnetic method	 Determine susceptibility value of research area Understand magnetic anomaly of mud volcano 	Practicum	1 x 50' 3 x 50'	Being able to Determine susceptibility value and the lithology in research area.	1.Subject comprehension 2.Suitability of the task and the result	10%
7	Students are able to explain the seismic refraction method	Understand the wave arrival time on each layers	Practicum	1 x 50' 3 x 50'	Being able to understand the wave arrival time on each layers	1.Subject comprehension 2.Suitability of the task and the result	10%
8	Mid Semester Evaluatio	n	<u> </u>		l		10 %
9	Students are able to explain the seismic reflection method	Understand the wave arrival time on each layers	Practicum	1 x 50' 3 x 50'	Being able to understand the wave arrival time on each layers	1.Subject comprehension 2.Suitability of the task and the result	10 %

10 - 12	Students are able to explain VLF method	 Understand rock structure in sub- surface Understand conductivity effect on sub-surface structure. 	Practicum	1 x 50' 2.x 50'	Being able to understand rock structure in sub-surface and conductivity effect on sub-surface structure.	1.Subject comprehension 2.Suitability of the task and the result	10 %
13 - 14	Students are able to explain microtremor method	Understand the characteristics of soil layers based on its dominant period/natural frequency parameters and wave amplification factors	Practicum	1 x 50' 3 x 50'	Being able to understand the characteristics of soil layers based on its dominant period/natural frequency parameters and wave amplification factors	1.Subject comprehension 2.Suitability of the task and the result	10 %
15	Students are able to explain the geology observation	 Understand structural geology in research area Understand local geology and regional geology of research area 	Practicum	1 x 50' 3 x 50'	Being able to Understand structural geology, local geology and regional geology of research area	1.Subject comprehension 2.Suitability of the task and the result	10 %
16	End Semester Evaluatio	n		1	1	1	10 %

- 1. Telford et al., Applied Geophysics, Cambridge Univ. Press, 1976
- 2. Reynolds, J.M., An Introduction to applied and environmental Geophysics. John Wiley and Sons, 1997.
- 3. Sheriff, R.E., dan L.P. Geldart, Exploration Seismology. Cambridge Univ. Press, 1995.
- 4. Grant & West, Interpretation Theory in Applied Geophysics, Mc. Graw-Hill Book Company, 1965.

Program Study Geophysical Engineering Department			
Course	Seminar		
Cource Code	RF184737		
Semester	VII (Seven)		
Credit	2 (T:2) SKS		
Lecturer	Dr. Widya Utama, DEA		

Study materials	Scientific Writing, Language					
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise			
(LO)			independently;			
	General Skills	Skills 2.1 being able to apply logical, critical, systematic, and innovative thinking in the				
		context of development or implementation of science and technology that concer				
	and implements the value of humanities in accordance with their area of expe					
	Knowledge	3.8	understanding the principle and methods of mapping application that required			
			general geophysical engineering work;			
	Specific Skills	4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers;			
LO – Course	[C3.P3,A3] Students are able to understand how to think scientifically, study topics for final assignments from national					
	and international journals and	presen	t them in oral and scientific work papers.			

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8

1	[C3.P3,A3]	[K1]:	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy in	
	Students are able to	Lecture contract,	Discussion, compare			understanding	
	understand scientific	introduction to	several writings and			the structure of	
	reports	scientific reports	reports			scientific	
						reports	
2	[C3.P3,A3]	[K2]:	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy in	
	Students are able to	Structure of	Discussion;			understanding	
	understand the	scientific reports				the structure of	
	structure of scientific					scientific	
	reports					reports	
3	[C3.P3,A3]	[K3]:	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy in	10%
	Students are able to	Language with	Discussion;		[Task 3]:	understanding	
	understand	correct			arrange	correct	
	Indonesian grammar	Indonesian			sentences that	scientific report	
	in scientific reports	structure			are standard	sentences in	
					and correct	Bahasa.	
4	[C3.P3,A3]	[K4]:	Direct Lecture,	TM: 1x(3x50")	Discussion	Accuracy in	
	Students are able to	English with the	Discussion;			understanding	
	understand English	correct structure				correct	
	grammar in scientific					scientific report	
	reports					sentences in	
						English	
5	[C3.P3,A3]	[K5]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Format table and	Discussion;			of	
	understand how to	picture				understanding	
	make good picture						
	table illustrations in						
	scientific reports						

6	[C3.P3,A3]	[K6]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Format table and	Discussion;			of	
	understand how to	picture				understanding	
	make good picture						
	table illustrations in						
	scientific reports						
7	[C3.P3,A3]	[K7]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Format table and	Discussion;			of	
	understand how to	picture				understanding	
	make good picture						
	table illustrations in						
	scientific reports						
8			Mid Semester Evalu	ation			30%
9	[C3.P3,A3]	[K9]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Ms. Word	Discussion;			of	
	apply Ms. Words in	optimization in				understanding	
	scientific reports	making reports					
10	[C3.P3,A3]	[K10]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Format abstract	Discussion;			of	
	compile of abstracts	and introductory				understanding	
	and introductory						
	chapters						
11	[C3.P3,A3]	[K11]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	10%
	Students are able to	Format literature	Discussion;		[Task 11]:	of	
	compile a literature	review and			Make abstracts	understanding	
	review and	theoretical basis			to the literature		
	theoretical basis				review chapter		

12	[C3.P3,A3]	[K12]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Format of	Discussion;			of	
	compile the	research				understanding	
	methodology chapter	methodology and					
	and research results	results					
13	[C3.P3,A3]	[K13]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	10%
	Students are able to	Format	Discussion;		[Task 13]:	of	
	compile references	bibliography and			Create	understanding	
	and citations	citations			methodologies		
					to bibliography		
14	[C3.P3,A3]	[K14]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	
	Students are able to	Paper, journal and	Discussion;			of	
	make publications	poster format				understanding	
15	[C3.P3,A3]	[K15]:	Direct Lecture,	TM: 1x(3x50")	Discussion	The accuracy	10%
	Students are able to	Scientific	Discussion;		[Task15]:	of	
	make scientific	presentation			make scientific	understanding	
	presentations	format			presentations		
16							30%

- Briscoe, M.H., A guide to scientific illustrations
 Cargill, M. dan O'Connor, P., Writing Scientific Research Article
- 3. Jurnal Kebumian

Program Study	Geophysical Engineering Department			
Course	Ineral Deposit Exploration			
Cource Code	RF184839			
Semester	VIII (Eight)			
Credit	3 (T:3) SKS			
Lecturer	Anik Hilyah, S.Si., M.T.			

Study materials	Geology, Mechanics, Mineral, Geophys	ics	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
		3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;

	3.8	understanding the principle and methods of mapping application that
		required in general geophysical engineering work;
	3.10	understanding the concepts and principle of environmental
	0.10	preservation in general from geophysical engineering activities;
	3.13	mastering the insights of sustainable development in the geophysical
	3.13	exploration methodologies and natural resource management;
Specific Skills	4.1	being able to apply the principles of mathematics, science and
	1.1	engineering principles into procedures, processes, systems or
		methodologies of geophysical engineering, to create or modify
		models in solving complex engineering problems in the fields of
		environment, settlement, marine and energy with the concept of
		sustainable development;
	4.2	being able to find the source of engineering problems through the
		process of investigation, analysis, interpretation of data and information
		based on the principles of geophysical engineering;
		oused on the principles of geophysical engineering,
	4.6	capable of selecting resources and utilizing geophysical engineering
		design and analysis tools based on appropriate information and
		computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process
		through testing, measurement of objects, work, analysis, interpretation
		of data in accordance with procedures and standards of geophysical
		exploration activities by paying attention to geological rules and
		exploration purposes;
	4.0	
	4.9	being able to recognize the difference of land and sea exploration field
		characteristics that can be affected into the quality of measurement data;
		,

		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	exploration stages of mineral deposits), as Mineral sediment exploration. The conce	re able ept incl	nentals of exploration activities (concepts, models, principles, planning and to integrate analysis up to the reserve estimation stage. Concept and models udes several mineral deposit genes. Exploration models include geological sed, for example: geological surveys, geoelectric, geomagnetic, induced

Week	The Expected of	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course				Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4]	Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	the accuracy of	
	Students are able to	Earth Structure	contract and		(Understanding	explaining	
	understand the	[K1]: Earth	brainstorming;		of the		
	geology structure and	Structure.ppt			constituent		
	Earth Structure				components of		
					the Earth from		
					the core to the		
					crust and the		

					relationship		
					with the		
					structural		
					geology)		
2	[C4,P4,A4]	Introduction to	Direct Lecture,	TM: 1x(3x50")	Discussion;	Get to know	
	Students are able to	Earth Crust	Discussion;	[BT+BM:2x(4x6)]	(Various types	Plate	
	understand the Earth's	Deformation		0")]	of tectonic	Movements	
	crust deformation	[K2]: Tectonic			displacement		
	(Divergent,	Deformation Part			crust);		
	Convergent and	1.ppt			Task-K2:		
	Transform)				Divergent,		
					convergent,		
					and transform		
					process		
					resumes		
3	[C4,P4,A4]	Introduction to	Direct Lecture,	TM: 1x(3x50")	Discussion;	Understand the	
	Students are able to	Brittle and Ductile	Discussion;	[BT+BM:2x(4x6)	(Brittle and	difference	
	explain the	in plate crusts		0")]	Ductile);	between the	
	differences between	[K3]: Brittle and			Task-K3:	Brittle and	
	brittle and ductile	Ductile.ppt			Exercise about	Ductile also the	
					Brittle and	structure that	
					Ductile,	results from	
					Difference	both	
					between		
					Divergent		
					Convergence		
					and		
					Transform		

4	[C4,P4,A4]	The concepts of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Get to know a	
'	Students are able to	kinematics and	Discussion;	[BT+BM:2x(4x6	(Plate tectonic	variety of plate	
	analyze kinematics	dynamics in	Discussion,	0")]	dynamics);	movements	
	and dynamics in plate	structural geology		· /J	Task-K4:	from kinematic	
	movements	[K4]: Kinematics			Make a Plate	force dynamics	
	mo vements	of Style.ppt			Motion	Torce dynamics	
		or Style.ppt			Kinematics		
					Resume		
5	[C4,P4,A4]	The concept of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Get to know	
	Students are able to	stratigraphic	Discussion;	[BT+BM:2x(4x6	(carbonate	the components	
	understand carbonate	sedimentary	Discussion,	0")]	sedimentary	of carbonate	
	sedimentary rocks	carbonate		V)]	rocks);	rocks	
	sedifficitally focks	sedimentary rocks			Quiz-K5:	TOCKS	
		[K5]: Introduction			Clastic and		
		to carbonatan			carbonate		
					sediments		
		sedimentary					
		rocks.ppt			(constituent		
	[C4 D4 A4]	T71	D: 11 1	TDM 1 (2 502)	components)	C 1	
6	[C4,P4,A4]	The concept of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Get to know	
	Students are able to	stratigraphic	Discussion;	[BT+BM:2x(4x6	(plate	the genesa of	
	understand the	sedimentary		0")]	dynamics in	carbonate	
	carbonate rock	carbonate			geophysics);	sedimentary	
	genesis (differences	sedimentary rocks			Task-K6:	rocks	
	with clastic	[K6]: Introduction			Exercise about		
	sedimentary rocks)	to carbonate			genesa		
		sedimentary rock			carbonate		
		genes.ppt			sedimentary		
					rock		

7	[C4,P4,A4]	The concept of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	
	Students are able to	stratigraphic	Discussion;	[BT+BM:2x(4x6	(clastic and	differences	
	understand the origin	sedimentary		0")]	non-clastic	between clastic	
	of the sedimentary	clastic and non-			sedimentary	and nonclastic	
	rock (genesis), its	clastic			rocks);	sedimentary	
	constituent	sedimentary rocks			Task-K7:	rocks	
	components, texture,	[K7]: Resume			Exercise about		
	structure, minerals,	stratigraphic			resume		
	then explain the	sediment of clastic			differences		
	depositional	and non-clastic			between		
	environment and its	sedimentary rocks			clastic and		
	classification				non-clastic		
					sedimentary		
					rocks		
8			Mid Semester Evalu	ation			30%
9	[C4,P4,A4] Students	Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Get to know	
	are able to understand	stratigraphic	contract and		(stratigraphic	the laws in	
	the science of	sediments in the	brainstorming;		principle);	stratigraphic	
	stratigraphy and the	stratigraphic				science	
	laws of stratigraphy	principle					
		[K9]: Introduction					
		to the principle of					
		stratigraphy.ppt					
10	[C4,P4,A4]	Introduction to	Direct Lecture,	TM: 1x(3x50")	Discussion;	the accuracy of	5%
	Students are able to	lithostratigraphy,	Discussion;	[BT+BM:2x(4x6	(understanding	explaining	
	understand the	chronostratigraph,		0")]	of		
	differences between	and			stratigraphy);		
	lithostratigraphy,	biostratigraphy			Task-K10:		

	chronostratigraphy, and biostratigraphy.	[K10]: Introduction to advanced stratigraphy.ppt			Exercise about lithosphere, biostrat, and cronostrate		
11	[C4,P4,A4] Students are able to analyze rock correlation	Basic concepts of sedimentary rock correlation (understanding datum / keybed) [K11]: rock correlation.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion;	the accuracy of explaining and comparing	
12	[C4,P4,A4] Students are able to analyze rock correlations (lithocorrelation, biocorrelation, and chronocorrelation)	Understanding of the differences between lithocorrelation, and chronocorrelation [K12]: lithocorrelation, biocorrelation, chronocorrelation. ppt	Direct Lecture, Discussion;Video	TM: 1x(3x50")	Discussion; Quiz-K12 :Stratigraphy and Correlation	the accuracy of explaining	5%
13	[C4,P4,A4] Students are able to read regional stratigraphy and its benefits	The basic concept of reading regional stratigraphy [K13]: Regional Geological Map.ppt	Direct Lecture, Discussion;Video	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion; Task-K13: Exercise to make a programming language	the accuracy of explaining	10%

					about flow simulation in the earth		
14	[C4,P4,A4] Students are able to understand the stratigraphic	The concept of stratigraphic sequences [K14]:	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion;	the accuracy of explaining	
	sequence	Introduction to stratigraphic sequences					
15	[C4,P4,A4] Students are able to understand Rock Stratigraphy, Rock Correlation, Rock Sequences	Comprehensive understanding of stratigraphic sediments [K15]: Jurnal.ppt	Discussion;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion; Task-K15: Presentation and resume of stratigraphic sediments	the accuracy of explaining	
16			End Semester Evalu	ation	<u> </u>		30%

- 1. Reynolds, J.M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley and Son.
- 2. Koesoemadinata, 2000, Geologi Eksplorasi
- 3. Peters, William C., 1978, Exploration and Mining Geology, John Wiley and Son
- 4. Telford, W.M., Geldart, L.P., Sherrif, R.E., 1990, Applied Geophysics, CambridgeUniv. Press.
- 5. Forrester, J.D., 1946, Principles of Field and Mining Geology, John Wiley and Son.

Program Study	Geophysical Engineering Department			
Course	assive Electromagnetic Exploration			
Cource Code	RF184840			
Semester	VIII (Eight)			
Credit	3 (T:2,P:1) SKS			
Lecturer	Wien Lestari, S.T., M.T.			

Study materials	Wave, Mathematics, Geology	,	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from

		data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
	3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
4.6	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;

		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
		4.11	capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.
LO – Course	components of the Passive Electrollection, processing, analyzing geophysical engineering subsu	etromag g the re urface	derstand the concepts, principles and techniques of system design, process or gnetic Method (VLF, and MT) and carry them out procedurally starting from data esults of interpretation with subsurface geological conditions and modeling to solve issue in mine exploration, hydrogeology, geotechnical engineering and the esults of own work and groups through scientific reports and presentations.

Week	The Expected of	Learning Subject	Learning	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course		Methods		Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A4]	Introduction to the	Introductory	TM: 2x(4x50")	Discussion;	Get to know EM	
	Students are able to	EM Method, the	Lecture, contract			applications in	
	understand the	development of the	and			general	
	electromagnetic	EM method and	brainstorming;				
		general applications					

	method (EM) and its	K1: introduction to					
	development	EM methods and					
		their					
		development.ppt					
2	[C4,P4,A4]	Basic principles	Direct Lecture,	TM: 1x(4x50");	Discussion;	the accuracy of	
	Students are able to	EM methods,	Discussion;			explaining	
	explain the concept	Maxwell's Equation					
	of EM methods	K2: Electric Field					
		Equation, Magnetic					
		Field and Maxwell					
		Equation					
3	[C4,P4,A4]	K3: Introduction to	Direct Lecture,	TM: 1x(4x50");	Discussion;	the accuracy of	
	Students are able to	the magnetotelluric	Discussion;			explaining	
	explain the concept	method, skin depth					
	of the EM-						
	Magnetotelurik						
	method						
4	[C4,P4,A4]	K4: introduction of	Direct Lecture,	TM: 1x(4x50");	Discussion;	the accuracy of	
	Students are able to	the data processing	Discussion;			explaining	
	explain the	stages of the MT					
	processing of the	method					
	Magnetotellurik						
	method						
5	[C4,P4,A4]	K5: Case study,	Direct Lecture,	TM: 1x(4x50");	Practicum	The accuracy of	10%
	Students are able to	data processing	Discussion;	[BT+BM:2x(4x60")]		applying a good	
	apply processing					filter to improve	
	Magnetotellurik					data quality	
	method						

6	[C4,P4,A4]	K6: Case study,	Direct Lecture,	TM: 1x(4x50")	Discussion;	the accuracy of	
	Students are able to	data processing	Discussion;			explaining and	
	explain the concept					comparing	
	of CSAMT-AMT and						
	apply Magnetotelurik						
	processing methods						
7	[C4,P4,A4]	K7 : CSAMT and	Direct Lecture,	TM: 1x(4x50");	Task 6: make a	The accuracy of	10%
	Students are able to	AMT data	Discussion;	[BT+BM:2x(4x60")]	resume paper	applying a good	
	explain the concept	processing			using the	filter to improve	
	of CSAMT-AMT and				CSAMT and	data quality	
	apply Magnetotelurik				AMT methods		
	processing methods				-Practicum		
8			Mid Semester	Evaluation			30%
9	[C4,P4,A4]	K9 : Introduction to	Direct Lecture,	TM: 1x(4x50");	Discussion;	the accuracy of	
	Students are able to	the VLF method	Discussion;			explaining	
	explain the concept						
	of Very Low						
	Frequency						
10	[C4,P4,A4]	K10: Introduction	Direct Lecture,	TM: $1x(4x50")$;	Discussion;	the accuracy of	
	Students are able to	to the processing	Discussion;			explaining	
	explain the	stages					
	processing phase of						
	Very Low Frequency						
11	[C4,P4,A4]	K11: Introduction	Direct Lecture,	TM: 1x(4x50");	Discussion;	the accuracy of	
	Students are able to	to the step of	Discussion;		Journal	explaining	
	explain the	modeling and			Resumes		
	processing step of	development of the					
	Very Low Frequency	VLF method					

12	[C4,P4,A4] Students are able to apply the passive electromagnetic method	K12 : The development of the MT method	Direct Lecture, Discussion;	TM: 1x(4x50");	Guest Lecture	the accuracy of explaining	
13	[C4,P4,A4] Students are able to apply the passive electromagnetic method	K12 : The development of the MT method	Practicum	TM: 1x(4x50");	Practicum	the accuracy of explaining	10%
14	[C4,P4,A4] Students are able to apply the passive electromagnetic method	K14 : The development of the MT method	Direct Lecture, Discussion;	TM: 1x(4x50");	Guest Lecture	the accuracy of explaining	
15	[C4,P4,A4] Students are able to apply the EM VLF method	K14 : Introduction to the processing step	Practicum	TM: 1x(4x50"); [BT+BM:2x(4x60")]	Discussion; practicum	the accuracy of explaining	10%
16		End Semester		Report presentation		30%	

- 1.Telford, W., Geldart, L.P., Sheriff, R. E. (1976). Applied Geophysics. Cambridge Univ Press, Cambridge.
- 2. Griffiths, D. J. (1999). Introduction to Electrodynamics, 3rd ed., Prentice Hall.
- 3. Zhdanov, M. S. (2009). Geophysical Electromagnetic Theory and Methods. Elsevier.
- 4. Simpson, F. and Bahr, K. (2005). Practical Magnetotelluric. Cambridge.
- 5. Jurnal Geofisika

Program Study	Geophysical Engineering Department
Course	Carbonate Exploration
Cource Code	RF184841
Semester	VIII (Eight)
Credit	3 (T:2,P:1) SKS
Lecturer	Dr. Ayi Syaeful Bahri, S.Si., M.T.

Study materials	Definition of carbonate rocks	s, types, o	classification and general properties of rocks, calculating / measuring physical
	parameters of carbonate rock	s; porosi	ty, permeability, resistivity / conductivity, bulk modulus, aturation, wetability,
	capillarity and carbonate rock	ks as oth	er Nature Herritage
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise
(LO)		1.7	independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;

		3.8	understanding the principle and methods of mapping application that required in			
			general geophysical engineering work;			
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering			
			principles into procedures, processes, systems or methodologies of geophysical			
			engineering, to create or modify models in solving complex engineering problems			
			in the fields of environment, settlement, marine and energy with the concept of			
			sustainable development;			
		4.11				
		field using GPS, compass and satellite data; and				
		4.12	4.12 being able to criticize the complete operational procedures in solving the			
			problems of geophysical engineering technology that has been and / or is being			
			implemented and poured in the form of scientific papers.			
LO - Course	[C4,P4,A3] Students are able to apply and integrate geophysical methods to explore the physical properties of carbonate					
	rocks as typical rocks (Nature H	Herritag	ge).			

Week	The Expected of	Learning	Learning Methods	Time	Student's	Criteria and	Weight
	Sub LO - Course	Subject		Estimation	Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C4,P4,A3]	Introduction;	Introductory Lecture,	TM:	Discussion;	Knowing the	5%
	[Conceptual	Definition and	contract and	2x(4x50")	(Carbonate Rock	Classification	
	knowledge, Analyze]	classification of	brainstorming;		Classification	and Definition	
	Students are able to	Carbonate Rocks	(Task-K1: make a		and Definition);	of Carbonate	
	understand the	[K1]:	resume about the		Task-K1:	Rocks	
	Carbonate Rock	Introduction;	Carbonate Rock		Understanding		
	Classification	Definition and	Classification and		the Carbonate		
			Definition)		Rock		

2	[C4,P4,A3][Conceptu al knowledge, Analyze]: Able to explain the theoretical concept of carbonate rocks form as sedimentary rocks	classification of Carbonate Rocks The basic principle of the carbonate rocks form as sedimentary rocks	Direct Lecture, Discussion;	TM: 2x(4x50");	Classification and Definition Discussion; (Concepts and basic principles of carbonate sedimentary rock formation);	the accuracy of explaining	
3	[C4,P4,A3][Conceptu al knowledge, Analyze]: Knowing the concepts and principles of Carbonate Rock Genesis and its depositional environment	Formation and carbonate depositional environments	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; (Establishment Environment); Task-K3: Understanding the Concept and Formation Environment	the accuracy of explaining and comparing	5%
4	[C4,P4,A3][Conceptu al knowledge, Analyze]: Knowing the general physical properties of rocks and carbonate rocks	Physical characteristics of rocks and carbonate rocks	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; (General Concept of the Physical Properties of Rocks)	the accuracy of explaining and comparing	
5	[C4,P4,A3][Conceptu al knowledge, Analyze]: Able to	Physical properties of rocks	Direct Lecture, Discussion;	TM: 2x(4x50");	Discussion; (Physical	the accuracy of explaining and comparing	

7	explain the theoretical concepts of the physical properties of rocks [C4,P4,A3][Procedur al knowledge, Analyze]: Able to explain the theoretical concepts of the physical properties of rocks [C4,P4,A3][Procedur al knowledge, Analyze]: Able to explain the theoretical concepts of the physical properties of rocks	Physical properties of rocks Physical properties of rocks	Direct Lecture, Discussion; Direct Lecture, Discussion;	TM: 2x(4x50"); TM: 2x(4x50");	Properties of Rocks)) Discussion; (Physical Properties of Rocks)) Discussion; (Physical Properties of Rocks))	the accuracy of explaining and comparing the accuracy of explaining and comparing	
	r						
8	ran pullation		Mid Semester Evalua		D: .	T	20%
9	[C4,P4,A3][Procedur	Measurement of	The practice of	Kerja	Discussion;	Accuracy in	
	al knowledge,	the physical	measuring rock samples	Kelompok	(Physical	measuring,	
	Analyze]: Able to	properties of	in a Laboratory / class	2x(4x50");	Properties of	explaining and	
	understand and take	rocks			Rocks))	comparing rocks with their	
	measurements of						
	physical parameters of rocks					physical properties	
	OI TOCKS					properties	

10	[C4,P4,A3][Conceptu	Measurement of	The practice of	Kerja	Discussion;	Accuracy in	
	al knowledge,	the physical	measuring rock samples	Kelompok	(Physical	measuring,	
	Analyze]: Able to	properties of	in a Laboratory / class	2x(4x50");	Properties of	explaining and	
	understand and take	rocks			Rocks))	comparing rocks	
	measurements of					with their	
	physical parameters					physical	
	of rocks					properties	
11	[C4,P4,A3][Procedur	Measurement of	The practice of	Kerja	Group Work	Accuracy in	20%
	al knowledge,	the physical	measuring rock samples	Kelompok	(Measurement of	measuring,	
	Analyze]: Able to	properties of	in a Laboratory / class	2x(4x50");	Physical	explaining and	
	understand and take	rocks			Properties of	comparing rocks	
	measurements of				Rocks)	with their	
	physical parameters					physical	
	of rocks					properties	
12	[C4,P4,A3][Procedur	Presentation per	Student Presentations in	Kerja	Group Work	Accuracy in	10%
	al knowledge,	Group;	Classes	Kelompok	(Measurement of	measuring,	
	Analyze]: Able to	Measurement		2x(4x50");	Physical	explaining and	
	understand and take	Results Physical			Properties of	comparing rocks	
	measurements of	properties of			Rocks)	with their	
	physical parameters	rocks				physical	
	of rocks					properties	
13	[C4,P4,A3][Procedur	The basic	Carbonate Field Visit	Kuliah	Group Work per	Accuracy in	
	al knowledge,	principle is the	around Surabaya	Lapangan	site or location	observing in the	
	Analyze]: Knowing	carbonate rocks		6x50"	(field lecture	field	
	the concepts and	form as					
	principles of	sedimentary rocks					
	Carbonate Rock						
	Genesis and its						

14	depositional environment [C4,P4,A3][Procedur al knowledge, Analyze]: Knowing the concepts and principles of Carbonate Rock Genesis and its depositional environment	The basic principle is the carbonate rocks form as sedimentary rocks	Carbonate Field Visit around Surabaya	Kuliah Lapangan 6x50"	Group Work per site or location (field lecture	Accuracy in observing in the field		
15	[C4,P4,A3][Procedur al knowledge, Analyze]: Knowing the concepts and principles of Carbonate Rock Genesis and its depositional environment	The basic principle is the carbonate rocks form as sedimentary rocks	Carbonate Field Visit around Surabaya	Kerja Kelompok 2x(4x50");	Group Work per site or location (field lecture), Presented in Class	Accuracy in observing in the field	20%	
16			End Semester Evalu	End Semester Evaluation				

- 1. Schon, Physical Properties of Rock 8th Edition, Elsevier, Oxford UK, 2011
- 2. Telford, WM; Geldart, L.P; Sheriff, RE, 1998, Applied Geophysics, Cambridge Univ Press, Cambridge

Program Study	eophysical Engineering Department			
Course	Passive Seismic Exploration			
Cource Code	RF184842			
Semester	VIII (Eight)			
Credit	3 SKS (T:2,P:1)			
Lecturer	Firman Syaifuddin, S.Si., M.T.			

Study materials	Wave, Geology		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
		2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;

	3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
	3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
	3.7	understanding the factual knowledge and technology application methods; national and international technical references (codes and standards) also regulations in their working area to carry out geophysical engineering technology work in depth;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;

		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;				
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;				
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;				
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.				
LO – Course	hydrocarbon and geothermal reservoirs. of tools used as passive seismic wave vib to get a picture of subsurface conditions	C3,P3,A3] Students can understand the phenomena of naturally generated sesimic waves caused by fluid movement in ydrocarbon and geothermal reservoirs. Students can take measurements of passive seismic methods and know the types f tools used as passive seismic wave vibration recorders. Students are able to do passive seismic method data processing o get a picture of subsurface conditions in the form of both reservoir and non-reservoir. Students are able to analyze the henomena and geological processes that occur based on the interpretation of data on passive seismic methods.					

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C3, P3,A3] Understanding what will be learned in this lecture, understanding the basic foundations of the Passive Seismic	Introduction to Lectures: • Semester Learning Plan • Lecture Contracts • Assessment System	Introductory Lecture, contract and brainstorming;	TM: 1x(3x50")	Discussion; Make a summary	Understand what will be learned in this lecture Able to explain the basic of the Passive Seismic	"5% Task"
	method	2. Review seismology courses				method	
2	[C3, P3,A3] Understanding the concept of surface waves	Surface wave	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the concept of surface waves	"5% Task "
3	[C3, P3,A3] Understanding passive seismic wave recording instruments	Passive seismic wave recording instrument	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to explain the use of passive seismic wave recording instruments	"5% Task "
4	[C3, P3,A3] Knowing the concept of Geophone and its types	Geophone and its types	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary Quiz-01	Able to explain the concept of Geophone and its types	"5% Task " 15% Quiz

5	[C3, P3,A3]	Seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the concept	Interferometry	Discussion;			the concept of	Task "
	of Seismic				Make a	Seismic	
	Interferometry				summary	Interferometry	
6	[C3, P3,A3]	Seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%
	Able to do seismic	interferometry data	Discussion;			seismic	Task "
	interferometry data	processing			Make a	interferometry	
	processing				summary	data processing	
7	[C3, P3,A3]	Interpretation of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to interpret	"5%
	Able to interpret	seismic	Discussion;			seismic	Task "
	seismic	interferometric data			Make a	interferometric	
	interferometry data				summary	data	
8			Mid Semester Eval	uation			40%
9	[C3, P3,A3]	Microtremor	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the concept		Discussion;			the concept of	Task "
	of Microtremor				Make a	Microtremor	
					summary		
10	[C3, P3,A3]	Microtremor data	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do data	"5%
	Able to do data	processing,	Discussion;			processing	Task "
	processing	Interpretation of			Make a	and	
	and	Microtremor data			summary	Interpretation of	
	Interpretation of					Microtremor	
	Microtremor data					data	
11	[C3, P3,A3]	SASW and MASW	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the		Discussion;			the concepts of	Task "
	concepts of SASW				Make a	SASW and	
	and MASW				summary	MASW	

12	[C3, P3,A3]	SASW and MASW	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%	
	Able to do SASW	data processing	Discussion;			SASW and	Task "	
	and MASW data				Make a	MASW data		
	processing				summary	processing		
					Quiz-02			
13	[C3, P3,A3]	Interpretation data	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%	
	Able to do	of SASW and	Discussion;			Interpretation	Task "	
	Interpretation data of	MASW			Make a	data of SASW		
	SASW and MASW				summary	and MASW		
14	[C3, P3,A3]	Passive Seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%	
	Knowing the concept	Tomogrphy	Discussion;			the concept of	Task "	
	of Passive Seismic				Make a	Passive Seismic		
	Tomography				summary	Tomography		
15	[C3, P3,A3]	Passive Seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do data	"5%	
	Able to do data	Tomography data	Discussion;			analysis Passive	Task "	
	analysis Passive	processing			Make a	Seismic		
	Seismic Tomogrphy				summary	Tomogrphy data		
	data processing and	Interpretation of				processing and		
	Interpretation of	seismic passive data				Interpretation of		
	seismic passive data					seismic passive		
						data		
16			End Semester Evaluation					

- 1. Landsberg, H.E., 1955, Principles and Applications of Microearthquake Methods, Academic Press,
- 2. Kayal, J.R., 2008, Microearthquake Seismology and Seismotectonics of South Asia, Springer, US
- 3. Okada, H., Suto, K., 2003, The Microtremor Survey Method Geophysical Monograph Series, Society of Exploration Geophysicists.
- 4. Schuster, G. T., 2009, Seismic Interferometry, Cambridge University Press
- 5. Verdon, J. P., 2012, Microseismic Monitoring and Geomechanical Modelling of CO2 Storage in Subsurface Reservoirs, Springer-Verlag Berlin Heidelber

Program Study	Geophysical Engineering Department		
Course	Archeology Geophysics		
Course Code	RF184843		
Semester	VIII (Eight)		
Credit	3 (T:3) SKS		
Lecturer	Juan Pandu Gya Nur Rochman, S.Si., M.T.		

Study Materials	Wave, Mathem	ave, Mathematics, Geology						
8	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;					
(LO)	General Skills	being able to apply logical, critical, systematic, and innovative thinking in the context of implementation of science and technology that concerns and implements the value of accordance with their area of expertise;						
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;					
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;					
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;					

	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;				
	3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;				
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;				
3		understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;				
Specific 4.1 Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;				
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;				
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;				
	4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;				
		exploration activities by paying attention to geological rules and exploration purposes;				

		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;			
	4	4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;			
			capable of reading maps and satellite imagery, determining map orientation in the field using GPS, compass and satellite data; and			
	2		being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.			
LO - Course	[C4,P3,A3] Students are able to analyse using geophysical approach on archeology, paleo disaster, sedimentation and stratigraphy radiocarbon dating, as well as apply and utilize geophysical methods on illustrating sub-surface condition in archeological field					

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand the fundamental of Archeology	Archeology	Introductory Lecture, contract and brainstorming;	TM: 2x(4x50")	Discussion	Get to know the application of geophysics in archeology	
2	[C4,P4,A4]	Fundamentals of Geoscience	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	

	Students are able to explain the geoscience approach in archeology	Approach in Archeology					
3	[C4,P4,A4] Students are able to explain the geoscience approach in archeology	Fundamentals of Geoscience Approach in Archeology	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	
4	[C4,P4,A4] Students are able to explain about Paleo Disaster	Paleo disaster	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	
5	[C4,P4,A4] Students are able to explain about Paleo Disaster	Paleo disaster	Direct Lecture, Discussion;	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Discussion	The accuracy of applying the suitable filter to improve the data quality	10%
6	[C4,P4,A4] Students are able to explain the concept of Sedimentation Process and Stratigraphy	Sedimentation Process and Stratigraphy	Direct Lecture, Discussion;	TM: 1x(4x50")	Discussion	the accuracy of explaining and comparing	10%

7	[C4,P4,A4] Students are able to explain the concept of Sedimentation Process and Stratigraphy	Sedimentation Process and Stratigraphy	Direct Lecture, Discussion;	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Assignment 6: write a paper resume on CSAMT and AMT Methods - Practicum	The accuracy of applying the suitable filter to improve the data quality	10%
8	Mid Semester Evaluation						30%
9	[C4,P4,A4] Students are able to explain the concept of RadioCarbon Dating	Radiocarbon Dating	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	
10	[C4,P4,A4] Students are able to explain the concept of Radiocarbon Dating	Radiocarbon Dating	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	
11	[C4,P4,A4] Students are able to explain geophysics methods :GPR, VLF	K11 : Introduction to modelling steps and developments of VLF method	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion Journal Resume	the accuracy of explaining	10%
12	[C4,P4,A4] Students are able to explain the archeological methods by drone and camera	Archeological methods by drone and camera	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion	the accuracy of explaining	

13	[C4,P4,A4] Students are able to explain geophysics methods: Resistivity	Geophysical methods: Resistivity	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion Practicum	the accuracy of explaining	
14	[C4,P4,A4] Students are able to explain geophysics methods: Resistivity	Geophysical methods: Resistivity	Practicum	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Discussion Practicum	the accuracy of explaining	
15	[C4,P4,A4] Study Case	Study Case	Practicum	TM: 1x(4x50"); [BT+BM:2x(4x 60")]	Discussion Practicum	the accuracy of explaining	
16	End Semester Evaluation				Report Presentation		30%

- 1. Goldberg, P., & Macphail, R. (2006). Practical and Theoretical Geoarchaeology. Oxford: Blackwell
- 2. Holliday, V. T. (2004). Soils in Archaeological Research. New York, Oxford University Press. KEY REFERENCE FOR GEOARCHAEOLOGY OF SOILS
- 3. Stoops, G. and C. Nicosia, Eds. (2017). Archaeological Soil and Sediment Micromorphology. New York, Wiley and sons.

Program Study	Geophysical Engineering Department			
Course	Marine Geophysics			
Course Code	184844			
Semester	VIII (Eight)			
Credit	3 (T:3) SKS			
Lecturer	 Dr. Dwa Desa Warnana, S.Si., M.Si. Wien Lestari, S.T., M.T. 			

Study Materials	Geology, Mathem	Geology, Mathematics, Physics, Wave							
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;						
Outcome (LO)	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;						
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;						
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;						

	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a particular natural phenomena by its characteristics;
		3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysical engineering in depth;
		3.7	understanding the factual insights and technology application methods; codes and national/international standards as well as the regulations in force in his/her work area to carry out geophysical engineering technology work in depth;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.9	being able to recognize the difference between land and sea exploration field characteristics that can be affected into the quality of measurement data;
LO - Course			re able to design and integrate geophysics exploration acquisitions which suitable with the research to interpret seafloor geomorphology, anomaly or object under the sea level from geophysics data.

Week	The Expected of Sub LO-Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience*	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand and master the development of geophysics exploration on the sea and shore	Introduction to Marine Geophysics, the development of marine geophysics and its applications [K1]: Introduction to Marine Geophysical Methods.ppt	Introductory Lecture, Brainstorming;	TM: 1x(3x50")	Discussion (application and development of marine geophysics exploration, problems, and strategy); Task-K1 :Resume on development of marine geophysics exploration	Get to know the geoelectrical methods applications in general;	5%
2	[C4,P4,A4] Students are able to understand and explain the geology and geomorphology of marine	Geology and oceanic plate history [K2]: Introduction to marine geology and geomorphology methods .ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (marine geology and geomorphology); Task-K2 :marine structure and geomorphology analysis from geographic position	The accuracy of explaining	10%
3	[C4,P4,A4] Students are able to understand and explain the magnetic survey on the sea	Fundamentals of Marine Magnetic Survey [K3]: Marine magnetic survey.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine magnetic survey);	The accuracy of explaining	

4	[C4,P4,A4] Students are able to explain the deepwater geohazard	The concept of deepwater geohazard [K4]: Introduction to deepwater geohazard.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (deepwater geohazard);	The accuracy of explaining	
5	[C4,P4,A4] Students are able to explain the Marine HSE Fundamentals	the Marine HSE Fundamentals [K5]: Introduction to marine HSE.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (marine HSE); Task-K5 :resume guest lecture	The accuracy of explaining	5%
6	[C4,P4,A4] Students are able to explain the Gravity method in marine Exploration	Gravity method in marine Exploration [K6]: marine gravity survey.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (marine gravity survey);	The accuracy of explaining	
7	[C4,P4,A4]Students are able to explain some investigations and inventions of geoscience theory on oceanic crust, heat flow modelling, and navigation system	Marine investigations development [K7]: Marine Geophysics Journal.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine Geophysics Investigations); Task-K7: Marine Geophysics Investigations related to geodynamics, magnetic and gravity presentation	The accuracy of explaining	10%
8			Mid Semester Eva	luation			30%
9	[C4,P4,A4] Students are able to explain Seismology and	Fundamentals of Marine Seismic Methods [K9] : Marine Seismic Survey.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine Seismic Methods);	The accuracy of explaining	

	seismic exploration in marine (deep water)						
10	[C4,P4,A4] Students are able to explain Seismology and seismic exploration in marine (deep water)	Marine seismic interpretation and modelling [K10]: seismic survey interpretation and its development.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine Seismic Methods);	The accuracy of explaining	
11	[C4,P4,A4] Students are able to explain geoelectric exploration in marine (deep water)	Fundamentals of Marine Geoelectric Methods [K11]: Marine Geoelectric Survey.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine Geoelectric Methods);	The accuracy of explaining	
12	[C4,P4,A4] Students are able to explain geoelectric exploration in marine (deep water)	Marine geoelectric interpretation and modelling [K12]: marine geoelectric survey interpretation and its development.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine Geoelectric Methods);	The accuracy of explaining	
13	[C4,P4,A4] Students are able to explain the application of mechanical wave on the sea	Fundamentals of mechanical wave application on the sea [K13] :marine survey using mechanical wave.ppt	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2 x(4x60")]	Practicum data survey mechanic wave	The accuracy of explaining	10%

14	[C4,P4,A4] Students are able to explain the application of mechanical wave on the sea	Marine survey using mechanical wave interpretation and modelling [K14]: marine survey using mechanic wave interpretation and its development.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (mechanical wave application on the sea);	The accuracy of explaining	
15	-	Fundamentals of Marine electromagnetic methods [K15]: Marine electromagnetic survey.ppt	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion (Marine electromagnetic survey);	The accuracy of explaining	200/
16	End Semester Evaluat	ion	Data processing		30%		

- 1. Reynolds, John M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, England.
- 2. Jones, E. J., 1999, Marine Geophysics, John Wiley & Sons.
- 3. Turcotte, D.L., 1982, Geodynamics Application of continue Physics to geological Problems, John Wiley & Sons
- 4. Fowler, C.M.R., 1990, The Solid Earth. Cambridge University Press.
- 5. Fu, L., and Cazenave, A., satellite altimetry and Earth sciences, Academic Press, 2001.

Program Study	Geophysical Engineering Department
Course	Environment Geophysics
Course Code	RF184845
Semester	VIII (Eight)
Credit	3 (T:3) SKS
Lecturer	Dr.Dwa Desa Warnana, M.Si.

Study Materials	Geologi, Lingkungan, Ge	ofisika	
Learning	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
Outcome (LO)	General Skills 2.1		being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;

		3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
		3.12	understanding the concept, principle, workshop procedure, studio and laboratory activities, and Health and Safety Environment (HSE) in general;
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;
LO - Course	aster the concept, principle, and technique of designing system, process, or component applied intal problems and execute it procedurally started from data acquisition, processing, analysing all condition of subsurface and modelling for physical environment problem solving along with onsible for own work and group work through science report and presentation.		

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning Experience	Criteria and Indicators	Weight (%)
1	2	3	4	5	6	7	8
1	[C4,P4,A4] Students are able to understand the concept of environmental geophysics	Introduction	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50")	Discussion	The accuracy of explaining	5%
2	[C4,P4,A4] Students are able to understand the various kinds of physical environmental pollution along with its mitigation	physical environmental pollution along with its mitigation	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion : Problems exercises	The accuracy of explaining	10%
3	[C4,P4,A4] Students are able to understand the quality of environment	the quality of environment	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion : Task-10: Problems exercises	The accuracy of explaining	10%
4	[C4,P4,A4] Students are able to understand the environmental geophysics techniques related to monitoring system	environmental geophysics techniques related to monitoring system	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion: Task-10: Problems exercises	The accuracy of explaining	10%

5	[C4,P4,A4] Students are able to understand the environmental geophysics techniques related to physical environmental pollution mitigation	environmental geophysics techniques related to physical environmental pollution mitigation	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion: Task-10: Problems exercises	The accuracy of explaining	10%
6	[C4,P4,A4] Study Case	Study Case	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion: Task-10: Problems exercises	The accuracy of explaining	10%
7	[C4,P4,A4] Study Case	Study Case	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion : Task-10: Problems exercises	The accuracy of explaining	10%
8			Mid Semester Eva	luation			30%
9	[C4,P4,A4] Students are able to conduct an environmental pollution mapping methods	physical environmental pollution along with its mitigation	Introductory Lecture, lecture contract and brainstorming	TM: 1x(3x50")	Discussion	The accuracy of explaining	
10	[C4,P4,A4] Students are able to understand the hydrogeology methods	hydrogeology methods	Direct Lecture, Discussion;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion : Task-10: Problems exercises	The accuracy of explaining	5%

11	[C4,P4,A4] Students are able to analyse the pollution in the field	The concept and measurement of environmental pollution	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	The accuracy of explaining and comparing				
12	[C4,P4,A4] Students are able to understand the terrestrial pollution	the terrestrial pollution	Direct Lecture, Discussion, Video;	TM: 1x(3x50")	Discussion	The accuracy of explaining	5%			
13	[C4,P4,A4] Students are able to understand the marine pollution	the marine pollution	Direct Lecture, Discussion, Video;	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion	The accuracy of explaining	10%			
14	[C4,P4,A4] Study Case	Study Case	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion	The accuracy of explaining				
15	[C4,P4,A4] Study Case	Study Case	Discussion	TM: 1x(3x50") [BT+BM:2x(4x6 0")]	Discussion and Presentation	The accuracy of explaining				
16	End Semester Evaluation									

- 1. Telford, W., Geldart, L.P., and Sheriff, R. E. (1976). Applied Geophysics. Cambridge Univ Press, Cambridge.
- 2. Ward, S.H., Editor 1990, Geotechnical and Environmental Geophysics, SEG.
- 3. Davis, M.L. and Cornwell, D.A., 1991, Introduction to Environmental Engineering, McGraw Hill, Inc.5.
- 4. Jurnal Geofisika, Sedimentary, and Metamorphic,3 rd

Program Study	Geophysical Engineering Department						
Course	Mining Geophysics						
Cource Code	RF184846						
Semester	VIII (Eight)						
Credit	3 (Three) SKS						
Lecturer	Anik Hilyah, S.Si., M.T.						

Study materials	Mineral genesis, resource and	Mineral genesis, resource and reserve classification, sampling theory, application of gravity, radioactive, magnetic,				
	seismic, geoelectric, electromagnetic and logging methods for mineral exploration. Reserve calculation. Various survey					
	designs and methods for findi	ng min	eral deposits in various field conditions.			
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise			
(LO)		1.7	independently;			
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the			
			context of development or implementation of science and technology that concerns			
	and implements the value of humanities in accordance with their area of					
	2.7 being able to take responsibility for the achievement of group work and sup					
		and evaluate the work completion assigned to the worker und				
		responsibility;				
		2.8	being able to conduct self-evaluation process to work group under his or her			
			responsibility, and able to manage learning independently;			
	Knowledge	3.1	understanding the theoretical concept of engineering sciences, engineering			
			principles, and engineering design methods required to analyse and design system,			
			process, product, or component in geophysics engineering in deep;			
		3.2	understanding geological knowledge that required to understand the geological			
		process of a natural phenomenon by its characteristics;				
		3.5 understanding the concepts, principles and techniques of system design				
			application component of geophysical engineering in procedurally starting from			

			data retrieval, processing, interpretation and modeling to solve the problems of			
			geophysics engineering in deep;			
		3.7	Understanding the factual knowledge and technology application methods;			
			national and international technical references (codes and standards) also			
			regulations in their working area to carry out geophysical engineering technolog			
			work in depth;			
	Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering			
			principles into procedures, processes, systems or methodologies of geophysical			
			engineering, to create or modify models in solving complex engineering problems			
			n the fields of environment, settlement, marine and energy with the concept of			
			stainable development;			
		4.2	being able to find the source of engineering problems through the process of			
			investigation, analysis, interpretation of data and information based on the			
			principles of geophysical engineering;			
LO – Course	[C4, P4, A4] Students are able	to des	sign and integrate various geophysical exploration acquisitions that are suitable for			
	the target mineral. Students are	the target mineral. Students are able to interpret the characteristics fields that affect the sampling and interpret subsurface				
	mineral conditions.					

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Knowing the	■ Example	Direct Lecture and	150 minutes	Discussion;	Students are able to	
	application of	application of	Discussion;			know the types of	
	geophysical methods	geophysical				mineral deposits	
	in mining	methods in				and geophysical	
		mining				methods used	

2	Knowing the	 Classification 	Direct Lecture and	150 minutes	Discussion;	Students are able to	
	classification of	of resources	Discussion;			classify resources	
	resources and	and reserves				and reserves	
	reserves	according to					
		SNI and other					
		countries					
		■ Relationship					
		between the					
		classification of					
		resources and					
		reserves with					
		the stages of					
		exploration					
3	Understanding the	■ Sampling	Direct Lecture and	150 minutes	Discussion;	Students are able to	
	correct and accurate	technique	Discussion;			apply the sampling	
	sampling method	Sampling				method in	
		method				according to	
						geological	
						conditions	
4	Quiz 1 (Formative Eva	luation-Evaluation in	tended to improve the learn	ing process based of	on the assessment	that has been done)	15%
5	Understanding nickel	Application of	Direct Lecture and	150 minutes	Presentations,	Students are able to	10%
	deposit exploration	geophysical	Discussion;		Discussions	design surveys and	
		methods in			and	interpret nickel	
		nickel deposit			assignments	deposits	
		exploration					
6	Understanding the	Application of	Direct Lecture and	150 minutes	Presentation	Students are able to	
	exploration of iron	geophysical	Discussion;		and	design surveys and	
	deposits	methods in iron			Discussion		

		deposits				interpret iron	
		exploration				deposits	
7	Understanding the	■ Application of	Direct Lecture and	150 minutes	Presentation	Mahasiswa mampu	
	exploration of	geophysical	Discussion;		and	mendesain survei	
	aluminum deposits	methods in			Discussion	dan Students are	
		aluminium				able to design	
		deposits				surveys and	
		exploration				interpret aluminium	
						deposits	
8	Mid Semester Evaluati	on (Formative Evalua	ation-Evaluation which is in	ntended to improve	the learning proc	ess based on the	25%
	assessment that has been	en done)					
9	Understanding	■ Application of	Direct Lecture and	150 minutes	Presentation	Students are able to	
	copper deposits	geophysical	Discussion;		and	design surveys and	
	exploration	methods in			Discussion	interpret copper	
		copper deposits				deposits	
		exploration					
10	Understanding lead	 Application of 	Direct Lecture and	150 minutes	Presentation	Students are able to	
	deposits exploration	geophysical	Discussion;		and	design surveys and	
		methods in lead			Discussion	interpret lead	
		deposits				deposits	
		exploration					
11	Understanding PGE	■ Application of	Direct Lecture and	150 minutes	Presentation	Students are able to	
	deposits exploration	geophysical	Discussion;		and	design surveys and	
		methods in PGE			Discussion	interpret PGE	
		deposits				deposits	
		exploration					

13	Understanding gold deposits exploration Quiz 2 (Formative Eva	 Application of geophysical methods in gold deposits exploration luation-Evaluation in 	Direct Lecture and Discussion; tended to improve the learn	150 minutes	Presentation and Discussion on the assessment	Students are able to design surveys and interpret gold deposits that has been done)	15%	
14	Understanding diamond deposits exploration	 Application of geophysical methods in diamond deposits exploration 	Direct Lecture and Discussion;	150 minutes	Presentations, Discussions and assignments	Students are able to design surveys and interpret diamond deposits	10%	
15	Understanding radioactive deposits exploration	 Application of geophysical methods in radioactive deposits exploration 	Direct Lecture and Discussion;	150 minutes	Presentation and Discussion	Students are able to design surveys and interpret radioactive deposits		
16								

- 1. Reynolds, John M., 1997, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, England.
- 2. Moon, Charles J., dkk, 2006, Introduction to Mineral Exploration, Blackwell Publishing, Australia.
- 3. Guilbert, John M., dkk, 2007, The Geology of Ore Deposits, Waveland Press Inc., US.
- 4. Everett, Mark E., 2013, Near-Surface Applied Geophysics, Cambridge University Press, UK.

Program Study	Geophysical Engineering Department
Course Reservoir Geophysics	
Cource Code	RF184847
Semester	VIII (Eight)
Credit	3 (T:2,P:1) SKS
Lecturer	Firman Syaifuddin, S.Si., M.T.

Study materials	Geology, Seismic		
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of
(LO)			expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
	2.7 2.8 Knowledge 3.1	2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
		3.1	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyze and design system, process, product, or component in geophysics engineering in deep;

	3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;
	3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
	3.4	understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyze and design system, process, product, or component in geophysics engineering in deep;
	3.7	understanding the factual knowledge and technology application methods; national and international technical references (codes and standards) also regulations in their working area to carry out geophysical engineering technology work in depth;
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;

		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;	
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;	
		4.10	being able to organize the data and present it again by utilizing information technology that suits their needs;	
		4.12	being able to criticize the complete operational procedures in solving the problems of geophysical engineering technology that has been and / or is being implemented and poured in the form of scientific papers.	
LO – Course	[C4,P4,A4] Students can understand the reservoir properties related to geological events and the presence of economic fluids. Students are able to do stratigraphic seismic analysis in interpreting seismic data. Students are able to integrate all reservoir data to be modeled.			

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C3, P3,A3]	1. Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Understand what	"5%
	Understand what will	Lecture:	contract and			will be learned	Task "
	be learned in this		brainstorming;			in this lecture	

	lecture. Understand	• Semester			Make a		
	the basics of reservoir	Learning Plans			summary	Able to explain	
	properties	• College				the basics of	
		Contracts				reservoir	
		• Scoring system				properties	
		2. Review					
		property reservoir					
		courses					
2	[C3, P3,A3]	Sedimentation	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Understand the	and stratigraphy	Discussion;			the concepts of	Task "
	concepts of				Make a	Sedimentation	
	Sedimentation and				summary	and stratigraphy	
	Stratigraphy						
3	[C3, P3,A3]	depositional	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Understand the	environment and	Discussion;			the concept of	Task "
	concept of	facies			Make a	depositional	
	depositional				summary	environment and	
	environment and					facies	
	facies						
4	[C3, P3,A3]	Seismic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the concept	stratigraphy	Discussion;			the concept of	Task "
	of seismic				Make a	Seismic	
	stratigraphy				summary	stratigraphy	15%
					Quiz-01		Quiz
5	[C3, P3,A3]	Seismic Inversion	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the concept		Discussion;			the concept of	Task "
	of Seismic Inversion				Make a	Seismic	
					summary	Inversion	

6	[C3, P3,A3]	Post-stack	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do Post-	"5%
	Able to do Post-stack	inversion	Discussion;			stack inversion	Task "
	inversion				Make a		
					summary		
7	[C3, P3,A3]	Pre-stack	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do Pre-	"5%
	Able to do Pre-stack	inversion	Discussion;			stack inversion	Task "
	inversion				Make a		
					summary		
8	Mid Semester Evalua	tion (Formative E	valuation-Evaluation tha	at is intended to impro	ve the learning	process based on	40%
	the assessment that ha	as been done)					
9	[C3, P3,A3]	AVO concept	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the		Discussion;			the concepts of	Task "
	concepts of AVO				Make a	AVO	
	Concept				summary		
10	[C3, P3, A3]	AVO analysis	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing AVO	"5%
			Discussion;			analysis	Task "
	Knowing the AVO				Make a		
	analysis				summary		
11	[C3, P3,A3]	Geostatistics	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the		Discussion;			concepts and be	Task "
	statistical concepts				Make a	able to carry out	
	used in reservoir				summary	statistical	
	modeling					analyzes used in	

						reservoir	
						modeling	
12	[C3, P3,A3]	Kriging	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the Kriging		Discussion;			the Kriging	Task "
	concept and be able				Make a	concept and be	
	to apply it in				summary	able to apply it	
	reservoir modeling				Quiz-02	in reservoir	
						modeling	
13	[C3, P3,A3]	Co-kriging and	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the concept	Gaussian	Discussion;			the concept of	Task "
	of Co-kriging and	simulation			Make a	Co-kriging and	
	Gaussian simulation				summary	Gaussian	
						simulation	
14	[C3, P3,A3]	Static reservoir	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to explain	"5%
	Knowing the	modeling	Discussion;			concepts and be	Task "
	concepts and be able				Make a	able to do Static	
	to do static reservoir				summary	reservoir	
	modeling					modeling	
15	[C3, P3,A3]	Volumetric	Direct Lecture,	TM: 1x(3x50")	Discussion;	Knowing the	"5%
	Knowing the	evaluation of	Discussion;			concepts and be	Task "
	concepts and be able	OOIP and OGIP			Make a	able to do OOIP	
	to do OOIP and				summary	and OGIP	
	OGIP volumetric					volumetric	
	evaluations					evaluations	
	 						10::
16	Final Semester Evalua	ation (Evaluation in	ntended to find out the fina	al achievement of st	udent learning	outcomes)	40%

- 1. Dubrule, O., 2003, Geostatistics for Seismic Data Integration in Earth Model, SEG & EAGE
- 2. PYRCZ,M. J., DEUTSCH, C. V., 2014, GEOSTATISTICAL RESERVOIR MODELING, Oxford University Press, New York
- 3. Darling, T., "Well Logging and Formation Evaluation", Elsevier Inc., 2005. Zobin, V. M., 2012, Introduction to Volcanic Seismology, Elsevier, London, UK
- 4. Tiab, D. and Donaldson, E.C., "Petrophysics 2nd.", Elsevier, 2004.
- 5. Asquith, G. B. And Krygowski, D., "Basic Well Log Analysis, 2nd", American Association of Petroleoum Geologist, 2004.
- 6. Brown, A., "Interpretation of Three-Dimensional Seismic Data", American Association of Petroleoum Geologist, 2004.
- 7. Sheriff, R. E., Exploration Seismology, Cambridge Univ. Press. 1995.
- 8. Avseth, P., Mukerji, T., and Mavko, G., "Quantitative Seismic Interpretation", Cambridge University Press., 2005. Thorne Lay, Terry C. Wallace-Modern Global Seismology, Vol. 58-Academic Press (1995).

Program Study	Geophysical Engineering Department				
Course	Interpretation of Seismic Data				
Cource Code	RF184848				
Semester	VIII (Eight)				
Credit	3 (T:2, P:1) SKS				
Lecturer	Firman Syaifuddin, S.Si., M.T.				

Study materials	Seismic, Computing		
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge		understanding the theoretical concept of engineering sciences, engineering principles, and engineering design methods required to analyse and design system, process, product, or component in geophysics engineering in deep;
		3.2	understanding geological knowledge that required to understand the geological process of a natural phenomenon by its characteristics;

	3.3	understanding the theoretical concept of statistics to define the process complexity of a natural phenomenon;
	3.5	understanding the concepts, principles and techniques of system design, process or application component of geophysical engineering in procedurally starting from data retrieval, processing, interpretation and modeling to solve the problems of geophysics engineering in deep;
	3.6	understanding the complete operational knowledge related to the field of geophysical engineering technology;
	3.8	understanding the principle and methods of mapping application that required in general geophysical engineering work;
	3.9	mastering the principles of quality assurance in general in geophysics engineering work;
	3.10	understanding the concepts and principle of environmental preservation in general from geophysical engineering activities;
	3.11	mastering factual knowledge of current principles and issues in economic, socio-cultural and ecological issues in general that have an influence on the field of geophysics engineering;
	3.14	mastering general concepts, principles, and techniques of effective communication orally and in writing for specific purposes in general; and

	3.15	mastering factual knowledge about the development of cutting-edge technology and advanced materials in the field of geophysical engineering in deep
Specific Skills	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;
	4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;
	4.3	being able to conduct research that includes identification, formulation, and analysis of geophysical engineering problems;
	4.4	being able to formulate alternative solutions to solve complex geophysical engineering problems by considering economic, health, public safety, cultural, social and environmental factors;
	4.5	being able to design systems, processes, and components with an analytical approach and consider technical standards, aspects of performance, reliability, ease of application, sustainability and pay attention to economic, health and public safety, cultural, social and environmental factors;

		4.6	capable of selecting resources and utilizing geophysical engineering design and analysis tools based on appropriate information and computing technologies to perform geophysical engineering activities;
		4.7	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
		4.9	being able to recognize the difference of land and sea exploration field characteristics that can be affected into the quality of measurement data;
LO – Course	wave propagation. Students are able to analyze the mechanism of earthquake of	determin ccurrence	nena of earthquake and are able to explain the concept of earthquake e the location of the earthquake source, the type of earthquake, and e. Students can understand the principles and application of earthquake the basic concepts of seismology used in exploration.

Week	The Expected of Sub LO - Course	Learning Subject	Learning Methods	Time Estimation	Student's Learning	Criteria and Indicators	Weight (%)
- 1		2		_	Experience	_	0
1	2	3	4	5	6	7	8
1	[C4, P3,A3]	Introduction to	Introductory Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%
	Students are able to	Lecture:	contract and			subsurface	Task""
	understand how the	• Semester Learning	brainstorming;		Make a	mapping	
	concept of subsurface	Plans			summary		
	mapping using	 College Contracts 					
	geophysical methods	• Scoring system					
	and subsurface						
	mapping with	Subsurface Mapping					
	geological data						
2	[C3, P3,A3]	Basin Analysis	Direct Lecture,	TM: 1x(3x50")	Discussion;	Capable of	"5%
	Students are able to		Discussion;			analyzing the	Task""
	understand how the				Make a	types of basins	
	concept of basin				summary		
	formation and can						
	distinguish them						
3	[C4, P3,A3]	Geology of	Direct Lecture,	TM: 1x(3x50")	Discussion;	Capable of	"5%
	Students are able to	Petroleum	Discussion;			analyzing the	Task""
	understand how the				Make a	types of	
	concept of petroleum				summary	petroleoum system	
	system and its					concepts	
	constituent						
	components						
4	[C3, P3,A3]	Seismic Data	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to analyze	"5%
		Acquisition	Discussion;			the quality of	Task""

	Students ae able to understand the concept of seismic data acquisition and can evaluate the quality of seismic data				Make a summary Quiz-01	seismic data and find out the misinterpretation traps caused by the effects of seismic data acquisition	15% Quiz
5	[C4, P3,A3] Students know the steps of seismic data processing and misinterpretation traps caused by errors in seismic data processing	Seismic Data Processing	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to analyze the quality of seismic data and find out the misinterpretation traps caused by the effects of seismic data processing	"5% Task""
6	[C4, P3,A3] Students know the concept of correlation between wells and are able seismic well-tie.	Correlation of well data Seismic well-tie	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to do well-tie seismic analysis	"5% Task""
7	[C3, P3,A3] Students know the concept of interpretation seismic data qualitatively and	Interpretation of Qualitative Seismic Data	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to do structural interpretation of seismic data	"5% Task""

	are able to do						
	structural						
	interpretation						
8	Mid Semester Evalua	tion (Formative Evalua	tion-Evaluation that is	s intended to impre	ove the learning	g process based on	40%
	the assessment that ha	as been done)					
9	[C3, P3,A3]	Stratigraphic	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do	"5%
	Students know the	Interpretation	Discussion;			stratification	Task""
	concept of				Make a	analysis from	
	stratigraphic	Seismic Stratigraphy			summary	seismic data	
	interpretation seismic						
	data and are able to						
	interpret stratifraphy						
10	[C3, P3,A3]	Sedimentation	Direct Lecture,	TM: 1x(3x50")	Discussion;	Being able to	"5%
	Students know the	Environment	Discussion;			analyze the	Task""
	concept of				Make a	depositional	
	depositional	Quantitative Seismic			summary	environment from	
	environment and the	Data Interpretation				seismic data and	
	concept of					be able to carry	
	quantitative					out quantitative	
	interpretation					interpretations	
11	[C3, P3,A3]	Seismic attributes	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do seismic	"5%
	Students know the		Discussion;			attribute analysis	Task""
	concept of seismic	Seismic inversion			Make a	and do seismic	
	attributes and seismic				summary	inversion	
	inversion						
12	[C3, P3,A3]	Depth Conversion &	Direct Lecture,	TM: 1x(3x50")	Discussion;	Able to do depth	"5%
		Velocity	Discussion;			conversion	Task""

	Students know the concept of velocity and the process of converting maps in the time domain into the depth domain				Make a summary Quiz-02		
13	[C3, P3,A3] Students are able to identify reservoir types and evaluate them	Reservoir Identification Reservoir Evaluation	Direct Lecture, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Able to identify reservoir types and evaluate	"5% Task""
14	[C3, P3,A3] Students are able to understand the development of the latest concepts and technologies in the interpretation of seismic data	Case Study Reference Paper	Group paper presentations, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Students are able to conduct paper reviews and understand their contents and are able to present the contents of existing papers	"5% Task""
15	[C3, P3,A3] Students are able to understand the development of the latest concepts and technologies in the interpretation of seismic data	Case Study Reference Paper Study of literature from various sources	Group paper presentations, Discussion;	TM: 1x(3x50")	Discussion; Make a summary	Students are able to conduct paper reviews and understand their contents and are able to present the contents of existing papers	"5% Task""

16 Final Semester Evaluation (Evaluation intended to find out the final achievement of student learning outcomes)

40%

- 1. Brown, A., "Interpretation of Three-Dimensional Seismic Data", American Association of Petroleoum Geologist, 2004.
- 2. Sheriff, R. E., Exploration Seismology, Cambridge Univ. Press. 1995.
- 3. Avseth, P., Mukerji, T., and Mavko, G., "Quantitative Seismic Interpretation", Cambridge University Press., 2005. Thorne Lay, Terry C. Wallace-Modern Global Seismology, Vol. 58-Academic Press, 1995.

Program Study	Geophysical Engineering Department
Course	Internship
Cource Code	RF184849
Semester	VIII (Eight)
Credit	3 (Three) SKS
Lecturer	Anik Hilyah, S.Si., M.T.

Study materials	The application of geophysical knowledge and methods through internships in research institutions, private companies									
	and government aims to increase knowledge and experience about the scope of geophysical work									
Learning Outcome	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise							
(LO)		1.7	independently;							
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of							
			development or implementation of science and technology that concerns and implements the							
			value of humanities in accordance with their area of expertise;							
		2.7	being able to take responsibility for the achievement of group work and supervise and							
			evaluate the work completion assigned to the worker under his or her responsibility;							
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility,							
			and able to manage learning independently;							
	Knowledge	3.5	understanding the concepts, principles and techniques of system design, process or							
			application component of geophysical engineering in procedurally starting from data							
			retrieval, processing, interpretation and modeling to solve the problems of geophysics							
			engineering in deep;							
		3.6	understanding the complete operational knowledge related to the field of geophysical							
			engineering technology;							
		3.7	understanding the factual knowledge and technology application methods; national and							
			international technical references (codes and standards) also regulations in their working area							
			to carry out geophysical engineering technology work in depth;							

	Specific Skills 4.	4.1	being able to apply the principles of mathematics, science and engineering principles into procedures, processes, systems or methodologies of geophysical engineering, to create or modify models in solving complex engineering problems in the fields of environment, settlement, marine and energy with the concept of sustainable development;			
		4.2	being able to find the source of engineering problems through the process of investigation, analysis, interpretation of data and information based on the principles of geophysical engineering;			
LO – Course	[C4,P3,A3] Students are able to apply geophysical exploration methods, combine geophysical and geological data to produce accurate interpretations and have skills in geological and geophysical field surveys.					

Week	The Expected of	Learning	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	Sub LO - Course	Subject			Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	Students are able to	Material that is	Discussion;	100 minute	Presentation	Internship	25%
	make internship	relevant to the				proposal	
	proposals	case study					
2	Students are able to	Material that is	Internships in	1 month	Presentation	Ability to	25%
	master a science or	relevant to the	institutions / companies			complete case	
	method to complete a	case study				studies	
	case study						
3	Students are able to	Relevant	Discussion;	100 minute	Presentation	Students are able	25%
	apply geophysical	geophysical				to master	
	methods in a case	methods				internship	
	study					material.	

4	Students are able to	Relevant	Discussion;	100 minute	Task	Internship report	25%
	make internship	geophysical					
	reports	methods					

- 1. Reynolds, J.M., An Introduction to applied and environmental Geophysics. John Wiley and Sons, 1997.
- 2. Sheriff, R.E., dan L.P. Geldart, Exploration Seismology. Cambridge Univ. Press, 1995.
- 3. Grant dan West, Interpretation Theory in Applied Geophysics, Mc. Graw-Hill Book Company, 1965.
- 4. Jurnal Geophysics dan Jurnal Near Surface Geophysics

Program Study	Geophysical Engineering Department
Course	Geothermal Engineering
Cource Code	RF184851
Semester	VIII (Eight)
Credit	3 (T:3) SKS
Lecturer	Dr. Widya Utama. DEA

Study materials	Geology, Geophysics, Geoche	emistry	
Learning Outcome (LO)	Attitude	1.9	demonstrating attitude of responsibility on work in his/her field of expertise independently;
	General Skills	2.1	being able to apply logical, critical, systematic, and innovative thinking in the context of development or implementation of science and technology that concerns and implements the value of humanities in accordance with their area of expertise;
		2.7	being able to take responsibility for the achievement of group work and supervise and evaluate the work completion assigned to the worker under his or her responsibility;
		2.8	being able to conduct self-evaluation process to work group under his or her responsibility, and able to manage learning independently;
	Knowledge 3.6		understanding the complete operational knowledge related to the field of geophysical engineering technology;
		3.7	Understanding the factual knowledge and technology application methods; national and international technical references (codes and standards) also

		regulations in their working area to carry out geophysical engineering technology work in depth;
	Specific Skills 4.	being able to design systems, processes, and components with an analytical approach and consider technical standards, aspects of performance, reliability, ease of application, sustainability and pay attention to economic, health and public safety, cultural, social and environmental factors;
	4.	being able to improve the performance, quality or quality of a process through testing, measurement of objects, work, analysis, interpretation of data in accordance with procedures and standards of geophysical exploration activities by paying attention to geological rules and exploration purposes;
	4.	able to use the latest technology in carrying out geophysical engineering work in the field of environment, settlement, marine and energy;
LO – Course	[C3,P3,A3] Students understand g	geothermal exploitation, from well drilling to electricity generation and direct use

Week	The Expected of Sub	Learning Subject	Learning Methods	Time Estimation	Student's	Criteria and	Weight
	LO - Course				Learning	Indicators	(%)
					Experience		
1	2	3	4	5	6	7	8
1	[C3,P3,A3]	the concept of	Introductory Lecture,	TM: 2x(4x50")	Discussion,	Get to know EM	
	Students are able to	geothermal	contract and			applications in	
	understand the concept		Brainstorming,			general	
	of geothermal		Discussion;				

2	[C3,P3,A3]	geothermal	Direct Lecture,	TM: 1x(4x50");	Discussion,	the accuracy of	
	Students are able to	exploitation in the	Discussion;			explaining	
	explain the importance	risk analysis of					
	of geothermal	developing					
	exploitation in risk	geothermal energy					
	analysis of developing	in an area.					
	geothermal energy in an						
	area.						
3	[C3,P3,A3]	hydrothermal	Direct Lecture,	TM: $1x(4x50")$;	Discussion,	the accuracy of	
	Students are able to	system	Discussion;			explaining	
	explain the						
	hydrothermal system						
4	[C3,P3,A3] Students are	hydrothermal	Direct Lecture,	TM: $1x(4x50")$;	Discussion,	the accuracy of	
	able to explain the	system	Discussion;			explaining	
	hydrothermal system						
5	[C3,P3,A3]	geothermal	Direct Lecture,	TM: $1x(4x50")$;	Practicum	The accuracy of	10%
	Students are able to	conceptual model	Discussion;	[BT+BM:2x(4x6)		applying a good	
	apply data processing			0")]		filter to improve	
	for geothermal					data quality	
	conceptual models						
6	[C3,P3,A3]	geothermal	Direct Lecture,	TM: 1x(4x50")	Discussion,	the accuracy of	10%
	Students are able to	conceptual model	Discussion;			explaining and	
	apply data processing					comparing	
	for geothermal						
	conceptual models						
7	[C3,P3,A3]	fluid studies	Direct Lecture,	TM: 1x(4x50");	Task 6: make	The accuracy of	10%
		(thermodynamics)	Discussion;	[BT+BM:2x(4x6	a resume	applying a good	
				0")]	paper using		

8	Students are able to understand fluid studies (thermodynamics)		Mid Semester Evalua	tion.	the CSAMT and AMT- Practicum methods	filter to improve data quality	30%		
-									
9	[C3,P3,A3] Students are able to explain the geothermal	geothermal well drilling and completion	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining			
	well drilling and completion								
10	[C3,P3,A3] Students are able to explain the geothermal well drilling and completion	geothermal well drilling and completion	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining			
11	[C3,P3,A3] Students are able to explain geothermal well testing	Students are able to explain geothermal geophysics	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion, Journal resume	the accuracy of explaining	10%		
12	[C3,P3,A3] Students are able to explain geothermal well testing	Students are able to explain geothermal geophysics	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion,	the accuracy of explaining			
13	[C3,P3,A3] Students are able to explain the determination of resources and reserves	determination of resources and reserves	Direct Lecture, Discussion;	TM: 1x(4x50");	Discussion, Practicum	the accuracy of explaining			

14	[C3,P3,A3]	steam production	Practicum	TM: 1x(4x50");	Discussion,	the accuracy of	
	Students are able to	facilities and power		[BT+BM:2x(4x6)	Practicum	explaining	
	understand steam	plants		0")]			
	production facilities and						
	power plants						
15	[C4,P4,A4]	determination of	Practicum	TM: 1x(4x50");	Discussion,	the accuracy of	
	Students are able to	electrical power		[BT+BM:2x(4x6)	Practicum	explaining	
	determine electrical	and steam		0")]			
	power and steam	consumption					
	consumption						
16		End Semester 1		Report		30%	
				presentation			

- 1. Nenny Miryani Saptadji (2001): Teknik Panas Bumi, Diktat Kuliah Prodi Teknik Perminyakan.
- 2. D'Sullivan M.J & McKibbin R. (1989): Geothermal Reservoir Engineering, a Manual for Geothermal Reservoir Engineering Course at the Geothermal Institute University of Auckland.