

INSTITUT TEKNOLOGI SEPULUH NOPEMBER FACULTY OF SCIENCE AND DATA ANALYTICS DEPARTMENT OF STATISTICS STATISTICS UNDERGRADUATE PROGRAM

Course	Course Name	:	Stochastic Process	
	Course Code	:	SS234414	
	Credit	:	3 SKS	
	Semester	:	IV	

COURSE DESCRIPTION

Stochastic Processes is one of the courses parts of the field of Statistical Modeling which is aimed at developing and analyzing probability models that capture the phenomenon of the effects of event randomness in the short and long term or in a narrow or wide area. The probability model studied will involve a variety of mathematical and computational models that are equipped with applications, both quantitative and qualitative in the real world, in the fields of business, industry, environment, government, and society.

0 - 10				
PROGRAM LEARNING OUTCOME				
PLO	-4	Able to apply science and mathematics to support the understanding of statistical		
		methods		
PLO	-5	Able to apply statistical theory to statistical methods		
PLO	-7	Able to use modern computing devices to solve statistical problems		
PLO	-9	Able to apply statistical methods to analyze theoretical and real problems		
COURSE LEARNING OUTCOME				
CLO	.1	Be able to explain the meaning of a stochastic process by combining information on		
		state variables and their parameters		
CLO	.2	Be able to explain Markov Chain and construct a probability transition matrix of a		
		problem		
CLO	.3	Be able to make n-Step probability transition matrices and be able to analyze the first		
		step of Markov (First Step Analysis)		
CLO	.4	Be able to explain the properties, classification, stationarity, ergodicity, and limits of		
		Markov chains		
CLO	.5	Be able to explain the properties of the Poisson process and the spatial Poisson		
		process		
CLO	.6	Able to explain the concept of the input-output process (birth-death process) and its		
		implementation in the queuing system which is often found in everyday life.		
MAIN SUBJECT				
1.	Stoc	hastic Processes and Markov Chains		
2.	Probability of transition 1 step and transition matrix			
3.	3. The Chapman-Kolmogorov equation for calculating the n-Step transition probability			
4.	. Limit distribution, First Step Analysis with absorbing and non-absorbing states			
5.	5. Classify Markov processes, ergodicity, recurrent, aperiodic, and irreducible conditions of a			

Markov process

- 6. Poission process of outing Bernoulli process, homogeneous and non-homogeneous Poisson, Cox process, and distribution between arrivals of Poisson events
- 7. Spatial dimension-based Poisson process
- 8. Decompose and compound Poisson process.
- 9. Markov model with continous time and The process of birth, death, birth-death, and absorbing.
- 10. Distribution of waiting times for renewal events.

11. Queuing Model (input – output process, limited and unlimited capacity queuing system)

PREREQUISITE

Introduction to Probability Theory

REFERENCES

- 1. Karlin, S. and Taylor, H.M., 2011. An Introduction to Stochastic Modeling. 3rd edition. Academic Press.
- 2. Beichelt, F. 2016. Applied Probability and Stochastic Processes. 2nd edition. LLC: Taylor dan Francis Group.
- 3. Sheldon, M. 2019. Ross-Introduction to Probability Models. 10th edition. Amsterdam: Elsevier.