

INSTITUT TEKNOLOGI SEPULUH NOPEMBER FACULTY OF SCIENCE AND DATA ANALYTICS DEPARTMENT OF STATISTICS STATISTICS UNDERGRADUATE PROGRAM

Course	Course Name	:	Simulation Technique
	Course Code	:	SS234521
	Credit	:	3 SKS
	Semester	:	V

COURSE DESCRIPTION

Simulation technique is computational course. After attending this course, students will have the competence to create a valid simulator with the real system being emulated. The learning strategy applied in this lecture is an explanation of the understanding of the system and some examples. Students play an active role to (i) be able to determine the number and variety of system simulation inputs as well as create random number generation programs and random variables and applied into statistical models in accordance with the simulation inputs of the real system to be made the simulator; and (ii) able to test the validity of random number generator representatives of the simulator input. The end of this lecture students can:(i) combine/ interact several input generator simulators to build a real simulator system and test its validity; (ii) utilize random number generators and variables to estimate distribution parameters and simple statistical models; (iii) use the simulator to experiment with determine the optimum condition of the real system.

PROGRAM LEARNING OUTCOME

PLO-2	Able to study and utilize science and technology in order to apply it to certain areas
	of expertise, and be able to make appropriate decisions from the results of their own
	work or group work in the form of final project reports or other forms of learning
	activities whose output is equivalent to the Final Project through logical, critical
	thinking , systematic and innovative.
PLO-3	Able to manage self-learning and develop oneself as a personal lifelong learner to
	compete at national and international levels, to make a real contribution to solving
	problems by implementing information and communication technology and paying
	attention to the principles of sustainability and understanding technology-based
	entrepreneurship.
PLO-5	Able to apply statistical theory in statistical methods
PLO-6	Able to design, collect, and perform data management with the right methodology
PLO-7	Able to use modern computing devices to solve statistical problems
PLO-8	Able to use computing techniques to solve statistical problems
PLO-10	Able to apply business, industrial, economic, social, health or environmental statistical
	methods to real problems

COURSE LEARNING OUTCOME		
0.1 Able to explain the use of Simulation Engineering concepts and procedures		
specifically in several fields		
LO.2 Able to analyze data with appropriate statistical methods and interpret them usi		
Simulation Techniques		
CLO.3 Able to identify, formulate, and solve statistical problems in various applied fields in		
the field of Simulation Engineering		
field of Simulation Engineering		
CLO5 Having knowledge about current and uncoming issues related to Sim		
Techniques		
CL0.6 Able to motivate yourself to think creatively, work together in interdisciplinary &		
multidisciplinary teams, and communicate effectively		
CLO.7 Capable of lifelong learning coupled with responsibility and professional ethics		
MAIN SUBJECT		
1. Introduction to Systems Modeling, Simulation Engineering Framework		
2. Discrete Even Simulation M/M/1, M/M/2, and Inventory		
3. Statistical Models and Selection of Simulator Input Models as Input Models in Simulation		
Techniques		
4. Generation of Random Numbers (PBR) and Random Variables (PVR); DDL (Data Definition		
Language)		
5. Making Simulators		
6. Simulator Output Analysis		
7. Simulator Validation		
8. Building Alternative Systems		
9. Simulator System Optimization		
PREREQUISITE		
-		
REFERENCES		
1. Law, A. M., 2015. Simulation Modelling and Analysis. 5th edition. McGraw Hill.		
2. Banks, J., Carson II, J. S., Nelson, B. L., dan Nicol, D. M. 2014. Discrete-Event System Simulation.		
Pearson, England		
3. Brailstord, S., Churilov, L., dan Dangerfield, B, 2014. Discrete-event simulation and system		

3. Brailsford, S., Churilov, L., dan Dangerfield, B, 2014. Discrete-event simulation and system dynamics for management decision making. John Wiley & Sons, West Sussex, United Kingdom