Time-series forecasting plays a crucial role in various fields, including economics, healthcare, and meteorology, where accurate predictions are essential for informed decision-making. As data volume and complexity continue to grow, the need for efficient and reliable forecasting methods has become more critical. iTransformer, a recent innovation, improves interpretability while effectively handling multivariate data. In this study, the author proposes Dual-Net iTransformer, a novel approach that integrates iTransformer with a dual-network framework to enhance both accuracy and efficiency in time-series forecasting. This research aims to evaluate and compare the performance of traditional methods, iTransformer, and Dual-Net iTransformer, highlighting the advantages of the proposed model in improving forecasting outcomes.
Ary Mazharuddin ShiddiqiInstitut Teknologi Sepuluh Nopember Bagaskoro Kuncoro ArdiInstitut Teknologi Sepuluh Nopember Bilqis AmaliahInstitut Teknologi Sepuluh Nopember I Komang
Ubaidillah Ariq PrathamaInstitut Teknologi Bandung Ayu PurwariantiInstitut Teknologi Bandung Samuel CahyawijayaCohere, United Kingdom Views: 331 Downloads: 199 DOI: https://doi.org/10.12962/j24068535.v23i2.a1323 Abstract Most
Ervina NoorainiInstitut Teknologi Sepuluh Nopember Mohamad Almas PrakasaInstitut Teknologi Sepuluh Nopemberhttps://orcid.org/0000-0003-0052-3656 Muhammad Ruswandi DjalalInstitut Teknologi Sepuluh Nopemberhttps://orcid.org/0000-0002-4313-4557 Rony Seto
Passion Timothy Gerald SianiparPoliteknik Imigrasi, Tangerang WilonotomoPoliteknik Imigrasi, Tangerang Priati AssirojPoliteknik Imigrasi, Tangerang Views: 376 Downloads: 151 DOI: https://doi.org/10.12962/j24068535.v23i2.a1267 Abstract The