Pusat Publikasi Ilmiah

PPI
24 September 2025, 15:09

A Dual-Network iTransformer Model for Robust and Efficient Time Series Forecasting

Oleh : itspublikasi | | Source : -
  • Ary Mazharuddin ShiddiqiInstitut Teknologi Sepuluh Nopember
  • Bagaskoro Kuncoro ArdiInstitut Teknologi Sepuluh Nopember
  • Bilqis AmaliahInstitut Teknologi Sepuluh Nopember
  • I Komang Ari MogiInstitut Teknologi Sepuluh Nopember
  • Agung Mustika RizkiInstitut Teknologi Sepuluh Nopember
  • Bintang NuralamsyahInstitut Teknologi Sepuluh Nopember
  • Ilham Gurat AdillionInstitut Teknologi Sepuluh Nopember
  • Moch. Nafkhan AlzamzamiInstitut Teknologi Sepuluh Nopember
Views: 431 Downloads: 394

DOI:

https://doi.org/10.12962/j24068535.v23i2.a1264

Abstract

 

Time-series forecasting plays a crucial role in various fields, including economics, healthcare, and meteorology, where accurate predictions are essential for informed decision-making. As data volume and complexity continue to grow, the need for efficient and reliable forecasting methods has become more critical. iTransformer, a recent innovation, improves interpretability while effectively handling multivariate data. In this study, the author proposes Dual-Net iTransformer, a novel approach that integrates iTransformer with a dual-network framework to enhance both accuracy and efficiency in time-series forecasting. This research aims to evaluate and compare the performance of traditional methods, iTransformer, and Dual-Net iTransformer, highlighting the advantages of the proposed model in improving forecasting outcomes.

https://juti.if.its.ac.id/index.php/juti/article/view/1264

Berita Terkait