

Design for Lyapunov Stability and Stabilization of Control Systems

Guisheng Zhai

Department of Mathematical Sciences Shibaura Institute of Technology, JAPAN

Modern Control System Representation

Output equation

$$\frac{\mathsf{d}x(t)}{\mathsf{d}t} = Ax(t) + bu(t)$$

$$y(t) = cx(t)$$

Linear system

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t), u(t))$$

$$y(t) = g(x(t), u(t))$$

Nonlinear system

A: system matrix

b: input matrix

c: output matrix

x(t): state vector

u(t): input vector

y(t): output vector

Outline

- Review of Previous Lecture
- Design of Lyapunov Functions for Stability Linear Matrix Inequality (LMI)
- Design of Lyapunov Functions for Stabilization Bilinear Matrix Inequality (BMI)

Lyapunov Stability Definitions (1)

Time-invariantantonomous (no control) system

$$\dot{x} = f(x)$$
, $x(0) = x_0$, f : Lipschitz C.

Equilibrium point $x_e \longleftarrow f(x_e) = 0$

Suppose
$$f(0) = 0 \Longrightarrow x_e = 0$$

(1) The equilibrium $x_e = 0$ is stable in the sense of Lyapunov, if

$$\forall \epsilon > 0, \exists \delta > 0, \text{s.t. } ||x_0|| \le \delta \Longrightarrow ||x(t)|| \le \epsilon, \forall t \ge 0$$

Lyapunov Stability Definitions (2)

(2) The equilibrium $x_e = 0$ is asymptotically stable, if it is stable, and $\exists \delta > 0, \text{s.t. } \|x_0\| \leq \delta \Longrightarrow \lim_{t \to \infty} x(t) = 0$

Lyapunov Stable (LS)

Aymptotically Stable (AS)

Exponentially Stable (ES)

(3) The equilibrium $x_e = 0$ is exponentially stable, if $\exists \delta > 0, c > 0, \lambda > 0 \text{ s.t. } ||x(t)|| < c||x_0||e^{-\lambda t}, \forall ||x_0|| < \delta$

Lyapunov Stability Theorem

If there is V(x) such that

positive definite

$$V(0) = 0$$
 and $V(x) > 0, \forall x \neq 0$

$$\dot{V}(x) \leq 0 \,, \quad orall x$$
 nonpositive definite

then $x_e = 0$ is stable (in the sense of Lyapunov)

Moreover, if

$$\dot{V}(x) < 0, \quad \forall x \neq 0$$

then $x_e = 0$ is asymptotically stable

V(x) is called a Lyapunov function (candidate)

Lyapunov Stability Definitions (3)

Stability of Nonlinear Systems (1)

$$\left[egin{array}{c} \dot{x}_1 \ \dot{x}_2 \end{array}
ight] = \left[egin{array}{c} -x_1 + 2x_2^2 \ -x_1x_2 - x_2 \end{array}
ight]$$

$$V_3(x(t)) = x_1^2(t) + 2x_2^2(t)$$

$$= -2x_1^2 - 4x_2^2 = -2V_3 < 0, \quad \forall x \neq 0$$

Aymptotically Stable (AS)

$$\lim_{t \to \infty} V_3(x(t)) = 0 \Longleftrightarrow \lim_{t \to \infty} x(t) = 0, \quad \forall x(0)$$

Stability of Nonlinear Systems (2)

 $J \equiv \text{moment of inertia}$ $k \equiv \text{friction coefficient}$

 $J\ddot{\theta}(t) = -k\dot{\theta}(t) - mgl\sin\theta(t)$

$$x_1 \equiv heta \,, \quad x_2 \equiv \dot{ heta}$$

$$\left[egin{array}{c} \dot{x}_1 \ \dot{x}_2 \end{array}
ight] = \left[egin{array}{c} x_2 \ -rac{mgl}{J} \sin x_1 - rac{k}{J} x_2 \end{array}
ight]$$

Design of Lyapunov Functions for Stability (1)

NO almighty method for general nonlinear systems

YES when the systems are linear $\dot{x}(t) = Ax(t)$

Consider $V(x) = x^T P x$, P > 0

(P symmetric positive definite $\iff V(x)$ positive definite)

$$\implies \dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$$

$$= (Ax)^T P x + x^T P (Ax)$$

$$= x^T (A^T P + PA) x$$

 $(\dot{V}(x) \text{ negative definite} \iff A^TP + PA \text{ symmetric negative definite})$

Aymptotically Stable (AS) $\iff A^T P + PA < 0, P > 0$

Stability of Nonlinear Systems (3)

$$V(x) \equiv mgl(1-\cos x_1) + rac{1}{2}Jx_2^2$$

kinetic energy

$$egin{aligned} rac{d}{dt}V &= (mgl\sin x_1)\dot{x}_1 + Jx_2\dot{x}_2 \ &= (mgl\sin x_1)x_2 + Jx_2\left(-rac{mgl}{J}\sin x_1 - rac{k}{J}x_2
ight) \ &= -kx_2^2 \leq 0 \,, \quad orall x \end{aligned}$$

Stable in the sense of Lyapunov (actually can claim AS ...)

Design of Lyapunov Functions for Stability (2)

The linear system $\dot{x}(t) = Ax(t)$ is AS (ES) iff

- (1) All real parts of A's eigenvalues are negative
- (2) $\forall Q > 0, \exists P > 0 \text{ s.t. } A^T P + PA = -Q$
- (3) $\exists P > 0 \text{ s.t. } A^T P + PA < 0$

Lyapunov Equation

(4) $\exists X > 0$ s.t. $AX + XA^T < 0$

Linear Matrix Inequality

Lyapunov equations and LMIs can be solved efficiently with MATLAB

Definition and Properties of LMI (1)

Notations

$$P > 0 \iff P = P^T$$
: positive definite $P < 0 \iff P = P^T$: negative definite

LMI formulation (in scalar variables)

$$F(x) = F_0 + x_1 F_1 + \dots + x_n F_n < 0$$

 $x = [x_1, \dots, x_n]^T, \quad F_i = F_i^T$

LMI is convex

$$F(x) < 0 , \quad F(y) < 0 \Longrightarrow \ F\left(\lambda x + (1-\lambda)y\right) < 0 , \quad orall \lambda \in [0,1]$$

LMI can be simultaneous

$$F_1(x) < 0 \,, \quad F_2(x) < 0 \Longleftrightarrow \left[egin{array}{cc} F_1(x) & 0 \ 0 & F_2(x) \end{array}
ight] < 0$$

Definition and Properties of LMI (3)

Properties of positive (negative) definite matrices

$$P > 0 \iff \forall \ \lambda(P) > 0$$

$$P < 0 \iff \forall \ \lambda(P) < 0$$

$$P > 0 \iff W^T P W > 0 \quad (|W| \neq 0)$$

$$P < 0 \iff W^T P W < 0 \quad (|W| \neq 0)$$

Schur Complement

$$\begin{bmatrix} P_1 & P_2 \\ P_2^T & P_3 \end{bmatrix} > 0 \iff P_1 > 0 & & P_3 - P_2^T P_1^{-1} P_2 > 0 \\ \iff P_3 > 0 & & P_1 - P_2 P_1^{-1} P_2^T > 0$$

Definition and Properties of LMI (2)

LMI in matrix variable

$$P > 0$$
, $A^T P + PA < 0$

$$P = \left[egin{array}{cc} x_1 & x_2 \ x_2 & x_3 \end{array}
ight] \qquad P = x_1 \left[egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight] + x_2 \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight] + x_3 \left[egin{array}{cc} 0 & 0 \ 0 & 1 \end{array}
ight] = egin{array}{cc} E_1 \end{array}$$

$$P > 0 \iff F_1(x) = x_1(-E_1) + x_2(-E_2) + x_3(-E_3) < 0$$

$$A^TP + PA < 0 \Longleftrightarrow$$

$$F_2(x) = x_1(A^TE_1 + E_1A) + x_2(A^TE_2 + E_2A) + x_3(A^TE_3 + E_3A) < 0$$

Definition and Properties of LMI (4)

LMI: linear w.r.t. (matrix or scalar) variables

$$A^{T}P + PA < 0 \qquad XA + A^{T}X < 0$$

$$A^{T}P + PA \quad VB$$

$$\begin{bmatrix} A^T P + PA & YB \\ B^T Y^T & -\tau I \end{bmatrix} < 0$$

Not LMI but equivalent to LMI

$$P^2 > I \iff \begin{bmatrix} P & I \\ I & P \end{bmatrix} > 0 \qquad P^2 < I \iff \begin{bmatrix} I & P \\ P & I \end{bmatrix} > 0$$

$$A^T \mathbf{P} + \mathbf{P}A + \mathbf{P}DD^T \mathbf{P} + E^T E < 0$$

Solving LMIs in Robust Control Toolbox

$$P>0\,,\quad A^TP+PA<0$$

Imis=getImis; [tmin, xfeas]=feasp(Imis)

$$A=\left[egin{array}{cc} 0 & 1 \ -2 & -3 \end{array}
ight]$$

$$\left[\begin{array}{cc} A^T P + P A & 0 \\ 0 & -P \end{array}\right] < 0$$

$$P = \begin{bmatrix} 1.5143 & 0.2958 \\ 0.2958 & 0.3484 \end{bmatrix}$$

Extension to Robust Stability (1)

The uncertain linear system

$$\dot{x}(t) = Ax(t), \quad A = \lambda A_1 + (1 - \lambda)A_2, \quad \lambda \in [0, 1]$$

is AS for any λ if

$$\exists P > 0 \text{ s.t. } A_1^T P + P A_1 < 0, \quad A_2^T P + P A_2 < 0$$

$$\exists X > 0 \ \text{ s.t. } XA_1^T + A_1X < 0, \quad XA_2^T + A_2X < 0$$

Extension to Stability with Convergence Rate

The linear system $\dot{x}(t) = Ax(t)$

$$||x(t)|| < c||x(0)|| e^{-\mu t} \quad (\mu > 0) \quad \iff$$

- (1) All real parts of A's eigenvalues $< -\mu < 0$
- (2) $\forall Q > 0, \exists P > 0 \text{ s.t. } (A + \mu I)^T P + P(A + \mu I) = -Q$
- (3) $\exists P > 0 \text{ s.t. } A^T P + PA < -2\mu P$

Lyapunov Equation

(4) $\exists X > 0$ s.t. $AX + XA^T < -2\mu X$

Linear Matrix Inequality (LMI)

Extension to Robust Stability (2)

The uncertain linear system

$$\dot{x}(t) = (A + DF(t)E) x(t), \quad ||F(t)|| \le 1$$
 is AS for any $F(t)$ if

$$\exists P > 0 \text{ s.t. } (A + DF(t)E)^T P + P(A + DF(t)E) < 0$$

$$A^T P + PA + PDD^T P + E^T E < 0$$

$$egin{bmatrix} A^TP + PA + E^TE & PD \ D^TP & -I \end{bmatrix} < 0$$

Design of Lyapunov Functions for Stabilization

Consider state feedback for linear control system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $u(t) = Kx(t)$

Closed-loop system

$$\dot{x}(t) = (A + BK)x(t)$$

Closed-loop system is AS iff

$$\exists P > 0 \text{ s.t. } (A + BK)^T P + P(A + BK) < 0$$

BMI with respect to P, K due to PBK can not be solved with MATLAB

Extension to Robust Stabilization (1)

State feedback for the uncertain linear control system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = Kx(t)$$

$$A = \lambda A_1 + (1 - \lambda)A_2, \quad \lambda \in [0, 1]$$

Control specification

$$||x(t)|| < c||x(0)|| e^{-\mu t} \quad (\mu > 0) \quad \forall \lambda \in [0, 1]$$

Closed-loop system

$$\dot{x}(t) = (A + BK)x(t)$$

$$A + BK = \lambda A_1 + (1 - \lambda)A_2 + BK$$
$$= \lambda (A_1 + BK) + (1 - \lambda)(A_2 + BK)$$

Design of Lyapunov Functions for Stabilization

Closed-loop system

$$\dot{x}(t) = (A + BK)x(t)$$

Closed-loop system is AS iff

$$\exists X > 0 \text{ s.t. } (A + BK)X + X(A + BK)^T < 0$$

 $\exists X > 0, M \text{ s.t. } AX + BM + (AX + BM)^T < 0$ LMI with respect to X, M

Extension to Robust Stabilization (2)

Closed-loop system

$$\dot{x}(t) = (A + BK)x(t)$$

$$A + BK = \lambda(A_1 + BK) + (1 - \lambda)(A_2 + BK)$$

is AS and $\|x(t)\| < c\|x(0)\|$ $e^{-\mu t}$ $(\mu > 0)$ $\forall \lambda \in [0,1]$ if

 $\exists X > 0 \text{ s.t.} \quad X(A_1 + BK)^T + (A_1 + BK)X < -2\mu X$ $X(A_2 + BK)^T + (A_2 + BK)X < -2\mu X$

$$\bigcap KX = M$$

LMIs $A_1X + BM + (A_1X + BM)^T + 2\mu X < 0$ $A_2X + BM + (A_2X + BM)^T + 2\mu X < 0$

Robust Stabilization for MDK Systems (1)

MDK (mass-spring-damper) system

Mass M = 1

 $K \in [2,3]$ Spring

Damper D=3

$$\frac{\mathsf{d}}{\mathsf{d}t} \begin{bmatrix} \boldsymbol{x_1(t)} \\ \boldsymbol{x_2(t)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{K}{M} & -\frac{D}{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{x_1(t)} \\ \boldsymbol{x_2(t)} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} \boldsymbol{u(t)}$$

$$A = \begin{bmatrix} 0 & 1 \\ -K & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Robust Stabilization for MDK Systems (3)

 $A1=[0 \ 1; \ -2 \ -3]; \ A2=[0 \ 1; \ -3 \ -3];$

Imiterm([1 2 2 m], B, 1, 's');

 $Imiterm([1 \ 3 \ 3 \ x], -1, 1);$

Robust Control Toolbox in MATLAB

X=dec2mat(Imis1.xfeas.x) M=dec2mat(Imis1, xfeas, m) K=M*inv(X)

$$X = 10^3 * \left[egin{array}{ccc} 0.0410 & -0.1873 \ -0.1873 & 1.3530 \end{array}
ight] egin{array}{cccc} M = \left[& -675.4848 & -669.1301 \end{array}
ight] \ K = \left[& -51.0492 & -7.5620 \end{array}
ight]$$

Robust Stabilization for MDK Systems (2)

Control Specification

$$\|x(t)\| < c\|x(0)\| \ e^{-\mu t} \quad (\mu = 3) \quad \forall K \in [2, 3]$$
 $K = 2\lambda + 3(1 - \lambda), \quad \lambda \in [0, 1]$
 $A = \lambda A_1 + (1 - \lambda)A_2$
 $A_1 = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ -3 & -3 \end{bmatrix}$
 $X > 0$
 $A_1X + BM + (A_1X + BM)^T + 2\mu X < 0$
 $A_2X + BM + (A_2X + BM)^T + 2\mu X < 0$

Robust Stabilization for MDK Systems (4)

Conclusion

- Review of Lyapunov stability in modern control systems
- Definition of LMIs and properties
- LMIs for stability analysis of linear systems
- LMIs for stabilization of linear systems
- More Topics:

Controller design with structure specification/limitation Extension to LaSalle's Invariance Principle, etc

End

terima kasih banyak

Thank you for your kind attention!

References

(1) H. K. Khalil: Nonlinear Systems. Prentice-Hall, New Jersey, 1996.

(2) S. Boyd et al: Linear Matrix Inequalities in Systems and Control Theory, SIAM, 1994

Additional References

• Linearized nonlinear systems

$$\dot{x}(t) = f(x(t)) \Longrightarrow \dot{x}(t) = \left(rac{\partial f}{\partial x} \Big|_{x=0}
ight) x + O(x^2)$$

• Time-variant systems

$$\dot{x}(t) = A(t)x(t)$$

• Uncertain systems (norm-bounded or polytopic)

$$\dot{x}(t) = (A + \Delta A(t, x)) x(t)$$

$$\dot{x}(t) = \left(\sum_{i=1}^N \mu_i A_i
ight) x(t)\,,\quad \mu_i \geq 0, \sum_{i=1}^N \mu_i = 1$$

• Stochastic control systems

$$dx(t) = [Ax(t) + Bu(t)] dt + Hx(t) dw(t)$$