

MODULE HANDBOOK STOCHASTIC PROCESS

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK STOCHASTIC PROCESS

Module name	Stochastic Process
Module level	Undergraduate
Code	KM184719
Course (if applicable)	Stochastic Process
Semester	Fall (Ganjil)
Person responsible for	Endah Rokhmati MP, S.Si, MT, Ph.D
the module	, , ,
Lecturer	Endah Rokhmati MP, S.Si, MT, Ph.D
Language	Indonesia and English
Relation to curriculum	Undergraduate degree program, elective , 7 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 2 x 50 = 100 minutes per week.
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per
	week.
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.
Credit points	2 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	Probability Theory
prerequisites	Mathematical Statistics
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO-1 Be able to understand the basics of stochastic
	processes and analyze a phenomenon through a
	mathematical frame of mind and then solve it optimally.
	CLO-2 Be able to perform simple identification of real
	problems, model them mathematically and solve them
	optimally.
	CLO-3 Be able to propose alternative solutions using a
	stochastic approach to simple problems individually or in
	groups.
Content	This course discusses the basics of stochastic processes, Simple
	random walks, Discrete Time Markov Chains (RMWD) and examples
	of RMWD models, State Classification, Transient Distribution, Limiting
	Behavior, First Passage Time, Occupancy Times, Continuous Time

Module Handbook: Stochastic Process - 2

	Markov Chains (RMWK), Homogeneous and Non-Homogeneous Poisson Processes, Birth Death Process, Queuing Model.
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	 Main: Kulkarni, V.G, "Modelling, Analysis, Design, and Control of Stochastic System", Springer Verlag, New York, 1999 V.G. Kulyarni, 1999. "Modeling, Analysis, Design, and Control of Stochastic System". Springer Verleg New York Supporting: Allen Linda J.S, An Introduction to Stochastic Processes with Application to Biology, Pearson Education, 2003 Ross, S.M, Stochastic Processes, John Wiley and Sons, 1996