

MODULE HANDBOOK Simulation

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK

Simulation

Module name	Simulation
Module level	Undergraduate
Code	KM184506
Course (if applicable)	Simulation
Semester	Fall (ganjil)
Person responsible for	Prof. Dr. M. Isa Irawan, M.T
the module	
Lecturer	Drs. Soetrisno, M.I.Komp.
	Drs. Nurul Hidayat, M.Kom
	Prof. Dr. M. Isa Irawan, M.T
Language	Indonesia and English
Relation to curriculum	Undergraduate degree program, mandatory, 5 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (2 hours) per
	week.
	3. Private learning: 3 x 60 = 180 minutes (2 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	Object Oriented Programming
prerequisites	Course Learning Outcome (CLO) often completing this
Learning outcomes and their	Course Learning Outcome (CLO) after completing this
corresponding PLOs	module,
corresponding FLOS	1. 1. Able to apply Mathematics thinking framework
	and computation-based pattern recognition
	algorithms to solve software development
	problems and intelligent systems.
	2. Able to solve and provide alternative solutions in
	the problem of pattern discovery in large-scale data
	with algorithm approaches studied either
	independently or in teamwork
	3. 3. Students are able to explain the concepts in data
	mining which include definition, application,
	process, task in data mining (classification,

Module Handbook: Simulation - 2

	clustering, association, sequence), and application
	of Mathematics as tools in DM
Content	of Mathematics as tools in DM Provide a theory and practical understanding to students in solving problems that exist in a system (real) through system modeling and system simulation. 1. Simulation and Decision-Making Analysis, 2. Engineering Element Simulation, 3. Development of Simple Simulation Model, 4. Data Collection and Analysis, 5. Random Number Generator And Random Variation, 6. Verification And Validation Model,
	7. Output Analysis,
	8. Model Optimization
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	 Main: Harry Perros, "Computer Simulation Techniques", NC State University publisher, 2009 Stewart V. Hoover and Ronal F. Perry, "SIMULATION – A Problem-Solving Approach", Addison-Wesley Publ. Co. Inc., 1989.3 Supporting reference: Singh, V.P., "System Modeling and Simulation", New Age International Publisher, 2009 Claudius Ptolemoeus, "System Design, Modeling and Simulation", Mountain View California, 2014