

MODULE HANDBOOK Optimum Estimation

BACHELOR DEGREE PROGRAM
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK

Optimum Estimation

Module name	Optimum Estimation	
Module level	Undergraduate	
Code	KM184816	
Course (if applicable)	Optimum Estimation	
Semester	Spring (Genap)	
Person responsible for	Prof. Dr. Erna Apriliani, M.Si	
the module		
Lecturer	Prof. Dr. Erna Apriliani, M.Si	
Language	Bahasa Indonesia and English	
Relation to curriculum	Undergradute degree program, elective 8 th semester.	
Type of teaching,	Lectures, <60 students	
contact hours		
Workload	1. Lectures: 2 x 50 = 100 minutes per week.	
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 h	nours) per
	week.	
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per wee	k.
Credit points	2 credit points (sks)	
Requirements	A student must have attended at least 75% of the lectures to join	
according to the	the exams.	
examination		
regulations		
Mandatory	-	
prerequisites		
Learning outcomes	Course Learning Outcome (CLO) after completing this	
and their	module,	
corresponding ILOs	CLO-1 Be able to understand the problem of dynamic	CLO-01
	system estimation, know the methods of estimation both	
	classical and modern and able to apply it appropriately.	
	CLO-2 Be able to analyze natural pheneomena; identify the	CLO-02
	Mathematics model, estimate the variables by forming a	
	good computer programming algorithm.	
	CLO-3 Be able to cooperate in presenting small topics	CLO-03
	related to optimum estimation in both written and oral	CLO US
	form.	

Content	This course examines classical estimation, deterministic observer, stochastic observer (stochastic dynamic system estimation), its formation and its application to Linear stochastic dynamic problems.	
Study and examination requirements and forms of examination	 In-class exercises Assignment 1,2 Mid-term examination Final examination 	
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.	
Reading lists	 Main: Phil Kim, Lynn Huh, "Kalman Filter for Beginners: with MATLAB Examples", A-JIN Publishing Company, 2010. Dan Simon, "Optimal State Optimation", John Wiley and Son, 2006. Supporting: Phil Kim, Lynn Huh, "Kalman Filter for Beginners: with MATLAB Examples", A-JIN Publishing Company, 2010. Dan Simon, "Optimal State Optimation", John Wiley and Son, 2006. 	