

MODULE HANDBOOK Measure Theory and Integration

BACHELOR DEGREE PROGRAM
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK

Measure Theory and Integration

Module name	Measure Theory and Integration
Module level	Undergraduate
Code	KM184811
Course (if applicable)	Measure Theory and Integration
Semester	Spring (Genap)
Person responsible for	Dra. Sunarsini, M.Si.
the module	·
Lecturer	Dra. Sunarsini, M.Si.
Language	Indonesia and English
Relation to curriculum	Undergraduate degree program, elective , 8 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures : 2 x 50 = 100 minutes per week.
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per
	week.
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.
Credit points	2 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	Analysis I
prerequisites	Analysis II
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	Students able to explain concepts of algebraic sets and sigma algebra
	Students able to explain Lebesgue measurable sets on
	R.
	3. Students able to explain the definition of Lebesgue
	measurable functions
	4. Students able to explain the definition of Lebesgue
	integral on R and its properties.
Content	Measure and Integral theory lecture materials include algebraic sets,
Content	sigma algebra, Lebesgue outer size, Lebesgue size, Lebesgue
	measurable function, almost everywhere concept and integral
	Lebesgue on R. In this course, students will learn to understand and
	explain the basic concepts of the subject matter. As an elective
	course, students are directed to find topics that are appropriate to
	course, stadents are directed to find topics that are appropriate to

	the subject matter as an independent task. These results are then presented, to furthermore be used as a final student task. In this course, students will study the following subjects: algebraic sets and sigma algebra, measure and properties, the set function, the outer measure of Lebesgue, the Lebesgue measure, Lebesgue measurable function, the concept of Almost Everywhere, the stair function and simple functions, Lebesgue integral.
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	 Jain, P.K., Gupta, V.P., "Lebesgue Measure and Integration", Wiley Eastern Ltd, 1986. Sunarsini, Diktat Kuliah: "Teori Ukuran dan Integral", 2011 Supporting reference: Royden, H.L., "Real Analysis", 4th ed., Mac Millan Pub. Comp, New York, 2010.