

MODULE HANDBOOK MAX-PLUS ALGEBRA

MASTER DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK MAX-PLUS ALGEBRA

Module name	Max-Plus Algebra
Module level	Master
Code	KM185212
Course (if applicable)	Max-Plus Algebra
Semester	Spring (Genap)
Person responsible for	Prof. Dr. Subiono, M.Sc.
the module	
Lecturer	Prof. Dr. Subiono, M.Sc.
Language	Bahasa Indonesia and English
Relation to curriculum	Master degree program, mandatory, 2 nd semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures : 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per
	week.
Cua dit u ainta	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in the exams.
according to the examination	the exams.
regulations	
Mandatory	Module theory
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding ILOs	CLO 1 : A mature student is able to develop math and writing
	mathematical proofs by default.
	CLO 2 : Students are able to appreciate the importance of
	understanding the structure of algebra to a higher - level
	concepts.
	CLO – 3 :Students can create awareness kususnya symbolic
	thinking within the framework of algebra supertropical
	CLO – 4: Students are able to develop an understanding of the
	concept and be able to draw conclusions and theories
	particularly pituitary max plus algebra idea to issue a large scale
	computing system

	CLO – 5 : Students have the understanding and the ability to use mathematical models to analyze issues, particularly the issue of scheduling and other disciplines related fields. CLO – 6 : Students are able to develop an understanding matematika framework that supports science and technology, and mathematics as well as communicate the results of the development of understanding orally in the form of presentations and writing standard in mathematics
Content	This course is presented on a study of a fundamental concept Algebra Max Plus and development that is supertropical algebra. The discussion focused on aspects of Theory and Applications. Furthermore, given the understanding Petri net in general, especially the relationship with the max plus algebra and given the ability to perform numerical computation in any discussion of using Scilab Max Plus Algebra Toolbox. Problem-based discussion is an integrated part in the study. Assessment of learning outcomes is done through an evaluation board, presentations and discussion of learners in the classroom
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2, 3 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading list	 Main: Subiono. "Lecture Notes: Ajabar Max Plus and Applications", Department of Mathematics FMKSD-ITS, 2018. Subionoand Kistosil Fahim, On Computing Supply Chain Scheduling Using Max Plus Algebra, Applied Mathematical Science, Journal for Theory and Applications, vol. 10, no. 10, 477-486, 2016 DOI 10.12988 / ams.2016.618. Kistosil Fahim, Subiono and Jacob van der Woude, On a generalization of power algorithms over max-plus algebra, DEDS, Discrete Event Dyn Syst (2017) 27: 181-203, DOI 10.1007 / s10626-016-0235-4, Springer Science + Business Media New York in 2017. Subiono, "On Classes of Min Max Plus Systems and Their Applications", PhD. Thesis, TU Delft, The Netherlans, (2000) Olsder Gj, Heidegott B. and JW van der Woude, Maxplus at Work, Modeling and Analysis of Synchronized System: A Course on Max-Plus Algebra and ITS Applications, Princeton University Press, 2006 Subiono, and JW van Wounde, "Power Algorithms for (mas, +) - and Bipartite (min, max, +) - Systems", Discreate Event Dynamic Systems: Theory and Applications, Volume 10, pp 369-389, 2002 CG Cassandras and Stephane LaFortune, Introduction to Discrete

- 9. Michel Gondran and Michel Minoux, "Graph, Dioids and Semirings, New Models and Algorithms", Springer, 2008
- 10. Christos G. Cassandras and Stephane LaFortune, "Introduction to Discrete Event Systems, Second Edition", Spriger 2008
- 11. James L. Peterson, "Petri Net Theory and the Modeling of Systems", Printice Hall, Inc., 1981

Supporting:

- 1. Dieky Adzkiya, "Building Petri Net Model of Traffic Lights and simulation", Thesis Department of Mathematics ITS, (2008)
- 2. Peter Fendiyanto " Supervisory Control on Traffic Management Systems at Airports Using Petri Net ", Thesis Department of Mathematics ITS, (2016)