

MODULE HANDBOOK MATHEMATICAL METHODS

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK MATHEMATICAL METHODS

Module name	Mathematical Methods
Module level	Bachelor
Code	KM184603
Course (if applicable)	Mathematical Methods
Semester	Spring (Genap)
Person responsible for	Drs. Sentot Didik Surjanto, M.Si
the module	
Lecturer	Drs. Sentot Didik Surjanto, M.Si
Language	Bahasa Indonesia and English
Relation to curriculum	Bachelor degree program, mandatory , 6 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures : $3 \times 50 = 150$ minutes per week.
	2. Exercises and Assignments : $3 \times 60 = 180 \text{ minutes (2 hours) per}$
	week.
	3. Private learning: 3 x 60 = 180 minutes per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	-
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO 1 - Students understand the basic concepts of
	mathematical methods.
	CLO 2 - Students are able to apply basic mathematical
	methods in solving real problems.
Content	This course equips students with certain methods in solving real
	problems such as signal refinement, magnetic fields and approach
	solutions. This course supports higher-level courses such as
	mathematical modeling, probability theory, image processing and
	boundary value problems.
	The course material includes: Special functions (Gamma, Beta, Bessel,
	Legendre) and transformations (Laplace and Fourier transforms).
Study and	In-class exercises
examination	• Assignment 1, 2, 3
requirements and	Mid-term examination
forms of examination	Final examination
Madia amplessed	
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.

Module Handbook: Mathematical Methods - 2

Reading lists	Main:
	1. Potter dan Goldberg, "Mathematical Methods", Prentice Hall International, New Jersey, 1987
	2. Erwin Kreyzig, "Advance Engineering Mathematics 9 th edition", Jon Wiley and Sons Inc, 2006.
	3. Usadha, IGN, "Modul Ajar Metode Matematika, 2009 Supporting:
	-