Department of Mathematics Institut Teknologi Sepuluh Nopember

email: matematika@its.ac.id - web: https://www.its.ac.id/matematika

Course	Course Name	: Introduction to Financial Mathematics
	Course Code	: KM184718
	Credit	: 2
	Semester	: 7

Description of Course

This subject presents the discrete basics of Financial Mathematics covering basic probability theory and discrete random variables, Brownian geometric motion, and current concepts and value analysis. Furthermore, the discussion focused on two financial derivative products namely European and American options where the pricing option is done through arbitrage. The option pricing model discussed is the Black-Scholes model and the numerical method discussed is the binomial method. In addition, the implementation of Brownian geometric motion on stock prices and crude oil prices will be discussed as enrichment.

Learning Outcome		
PLO	[C3] Students are able to solve simple and practical problems by	
2	applying basic mathematical statements, methods and computations	
PLO 3	[C4] Students are able to analyze simple and practical problems in at	
	least one field of analysis, algebra, modeling, system optimizations	
	and computing sciences	
PLO 4	[C5] Students are able to work on a simple and clearly defined	
	scientific task and explain the results, both written and verbally either	
	on the area of pure mathematics or applied mathematics or computing	
	sciences	
PLO	[C3] Students are able to make use of the principles of long life	
5	learning to improve knowledge and current issues on mathematics	

Course Learning Outcome

- 1. Understand the problems in finance through the Mathematics model, analyze and solve them
- 2. Be able to apply a mathematical thinking framework and identify financial problems in financial terms. To further model and solve problems analytically and empirically

Main Subject

The concept of probability and random variables, stochastic processes, Brownian geometric motion, interest concepts and present value analysis, European and American options, contract price through arbitrage, arbitrage theorem, binomial method, Black Scholes formula, optimization model, advanced geometric Brownian motion.

Prerequisites

Probability Theory

Reference

1. Ross, M. Sheldon, An Introduction to Mathematical Finance, Cambridge University Press, 1999

Supporting Reference

1. John C Hull, "Options, Futures, and Other Derivatives", Pearson, 2009