

MODULE HANDBOOK Introduction to Dynamic Optimization

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK

Introduction to Dynamic Optimization

Module name	Introduction to Dynamic Optimization
Module level	Undergradute
Code	KM184716
Course (if applicable)	Introduction to Dynamic Optimization
Semester	Fall (Ganjil)
Person responsible for	Prof. Dr. Dra. Mardlijah, MT
the module	
Lecturer	Prof. Dr. Dra. Mardlijah, MT
Language	Indonesia and English
Relation to curriculum	Undergradute degree program, elective , 7 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures : 2 x 50 = 100 minutes per week.
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per
	week.
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.
Credit points	2 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	-
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO-1 Be able to follow developments and apply mathematics
	and are able to communicate actively and correctly both orally
	and in writing.
	CLO-2 Be able to explain the basic and advanced principles of
	the theory they understand, especially with regard to
	optimization design formulations and methods of completion.
	CLO-3 Be able to explain intelligently and creatively about the
	significant role of the optimization system in the field of related
Contont	knowledge clumps or other fields.
Content	The discussion of dynamic optimization courses includes the study of the basics of the calculus of variations, and the calculus of variation approach to
	optimal control. In the learning process in the classroom, students will learn
	to identify problems, model. Besides being directed to learn independently
	through assignments, students are directed to work together in group
	work.

Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	 Main: Naidu, D.S, Optimal Control Systems, CRC Press, 2002 Bolza, O. Lectures on the Calculus of Variations, American Mathematical Society; 3 edition (October 31, 2000) Supporting: Subchan, S and Zbikowski, R., Computational Optimal Control: Tools and Practice, Wiley, 2009.