Department of Mathematics Institut Teknologi Sepuluh Nopember

email: matematika@its.ac.id - web: https://www.its.ac.id/matematika

Course	Course Name	: Introduction to Computation Fluid Dynamics
	Course Code	: KM184824
	Credit	: 2
	Semester	: 8

Description of Course

Basic concepts of fluid flow, numerical methods, up to and volume up to fluid flow related, Navier-Stokes equation settlement, fluid flow through complex geometric form, and turbulent flow.

Learning Outcome

PLO	[C3] Students are able to solve simple and practical problems by	
2	applying basic mathematical statements, methods and computations	
PLO 3	[C4] Students are able to analyze simple and practical problems in at	
	least one field of analysis, algebra, modeling, system optimizations	
	and computing sciences	
PLO 4	[C5] Students are able to work on a simple and clearly defined	
	scientific task and explain the results, both written and verbally either	
	on the area of pure mathematics or applied mathematics or computing	
	sciences	
PLO	[C3] Students are able to make use of the principles of long life	
5	learning to improve knowledge and current issues on mathematics	

Course Learning Outcome

- 1. Students understand, master and understand the basic concept of fluid flow.
- 2. Students are able to develop Numerics to solve fluid flow equations.
- 3. Students are able to understand and solve the Navier-Stokes equation.
- 4. Students are able to understand the basic concept of turbulence flow.

Main Subject

Basic concepts of fluid flow, numerical methods, up to and volume up to fluid flow related, Navier-Stokes equation settlement, fluid flow through complex geometric form, and turbulent flow.

Prerequisites

Reference

- Anderson, J. D. Jr.,"Computational Fluid Dynamics (The Basics with Applications), International Edition", New York, USA: Mc Graw-Hill, 1995
- 2. Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics For Engineers", Wichita, USA: Engineering Education System, 1995
- 3. Chung, T.J., "Computational Fluid Dynamics", Cambridge: Cambridge UniversityPress, 2002

Supporting Reference

- 1. Welty, J.R., et al., Fundamentals of Momentum, Heat and Mass Transfer, 3rd Edition, New York, USA: John Wiley & Sons, Inc., 1995
- 2. Versteeg, H.K. and Malalasekera, W., *An Introduction to Computational Fluid Dynamics The Finite Volume Method, Second Edition*, England: Prentice Hall Pearson Education Ltd., 2007.
- 3. Tu, J.Y., Yeoh, G.H. and Liu, G.Q., *Computational Fluid Dynamics-A Practical Approach*, Oxford, UK: Butterworth-Heinemann Publications, 2008
- 4. Yeoh, G.H. and Yuen, K.K., *Computational Fluid Dynamics in Fire Engineering*, Oxford, UK: Butterworth-Heinemann Publications, 2009