

MODULE HANDBOOK INTRODUCTION TO FINANCIAL MATHEMATICS

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK INTRODUCTION TO FINANCIAL MATHEMATICS

Module name	Introduction to Financial Mathematics
Module level	Undergradute
Code	KM184718
Course (if applicable)	Introduction to Financial Mathematics
Semester	Fall (Gasal)
Person responsible for	Endah Rokhmati MP, S.Si, MT, Ph.D
the module	
Lecturer	Endah Rokhmati MP, S.Si, MT, Ph.D
Language	Bahasa Indonesia and English
Relation to curriculum	Undergradute degree program, elective , 7 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 2 x 50 = 100 minutes per week.
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per
	week.
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.
Credit points	2 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	Teori Peluang
prerequisites	Opportunity Theory
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO-1: Understand problems in finance through
	mathematical models, analyze and solve them.
	CLO-2 : Able to apply a mathematical frame of mind and
	identify simple financial problems in the financial sector.
	To further model and solve problems analytically and
	empirically
Content	In this course, the fundamentals of Financial Mathematics are
	presented in a discrete manner which includes basic probability
	theory and discrete random variables, Brownian geometric motion,
	and the concept of interest and present value analysis. Furthermore,

	the discussion is focused on two financial derivative products, namely European and American options, where the option pricing is carried out through arbitrage. The option price model discussed is the Black-Scholes model and the numerical method discussed is the binomial method. In addition, the implementation of Brownian geometric motion on stock prices and crude oil prices will be discussed as enrichment.
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2, 3 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	Main: 1. Ross, M. Sheldon, An Introduction to Mathematical Finance, Cambridge University Press, 1999 Supporting: 1. John C Hull, "Options, Futures, and Other Derivatives", Pearson, 2009