

MODULE HANDBOOK INTRODUCTION TO DYNAMICAL SYSTEM

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Module name	Introduction to Dynamical System
Module level	Undergraduate
Code	KM184817
Course (if applicable)	Introduction to Dynamical System
Semester	Spring (Genap)
Person responsible for	Dr. Hariyanto, M.Si
the module	
Lecturer	Dr. Hariyanto, M.Si
Language	Indonesia and English
Relation to curriculum	Undergraduate degree program, elective , 8 th semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 2 x 50 = 100 minutes per week.
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per
	week.
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.
Credit points	2 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	_
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO 1: Students are able to study new topics about
	algebra, both theoretically and in application
	CLO 2: Students are able to understand and deliver
	material from related papers / papers in the form of
	presentations
Content	This course will discuss continuous dynamic systems and discrete
	dynamic systems
Study and	In-class exercises
examination	Assignment 1, 2, 3
requirements and	Mid-term examination
forms of examination	Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.

Reading lists Main: 1. Anderson, J. D. Jr.," Computational Fluid Dynamics (The Basics

- with Applications), International Edition", New York, USA: Mc Graw-Hill, 1995
- 2. Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics For Engineers", Wichita, USA: Engineering Education System, 1995
- Dynamics", 3. Chung, "Computational Fluid T.J., Cambridge: Cambridge UniversityPress, 2002

Supporting:

- 1. Welty, J.R., et al., Fundamentals of Momentum, Heat and Mass Transfer, 3rd Edition, New York, USA: John Wiley & Sons, Inc., 1995
- 2. Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics - The Finite Volume Method, Second Edition, England: Prentice Hall - Pearson Education Ltd., 2007.
- 3. Tu, J.Y., Yeoh, G.H. and Liu, G.Q., Computational Fluid Dynamics-A Practical Approach, Oxford, UK: Butterworth-Heinemann Publications, 2008
- 4. Yeoh, G.H. and Yuen, K.K., Computational Fluid Dynamics in Fire Engineering, Oxford, UK: Butterworth-Heinemann Publications, 2009