

## MODULE HANDBOOK Dynamical System

## MASTER DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

**INSTITUT TEKNOLOGI SEPULUH NOPEMBER** 

## MODULE HANDBOOK DYNAMICAL SYSTEM

| Module name            | Dynamical System                                                    |
|------------------------|---------------------------------------------------------------------|
| Module level           | Master                                                              |
| Code                   | KM185221                                                            |
| Course (if applicable) | Dynamical System                                                    |
| Semester               | Fall (Gasal)                                                        |
| Person responsible for | Dr. Tahiyatul Asfihani, S.Si, M.Si                                  |
| the module             |                                                                     |
| Lecturer               | Dr. Tahiyatul Asfihani, S.Si, M.Si                                  |
| Language               | Bahasa Indonesia and English                                        |
| Relation to curriculum | Master degree program, <b>mandatory</b> , 2 <sup>nd</sup> semester. |
| Type of teaching,      | Lectures, <60 students                                              |
| contact hours          |                                                                     |
| Workload               | 1. Lectures: 3 x 50 = 150 minutes per week.                         |
|                        | 2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per   |
|                        | week.                                                               |
|                        | 3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.       |
| Credit points          | 3 credit points (sks)                                               |
| Requirements           | A student must have attended at least 80% of the lectures to sit in |
| according to the       | the exams.                                                          |
| examination            |                                                                     |
| regulations            |                                                                     |
| Mandatory              | -                                                                   |
| prerequisites          |                                                                     |
| Learning outcomes      | Course Learning Outcome (CLO) after completing this                 |
| and their              | module,                                                             |
| corresponding ILOs     |                                                                     |
|                        | CLO 1: Students are able to identify real problems into dynamic     |
|                        | system forms                                                        |
|                        | CLO 2: Students are able to get dynamic system parameter            |
|                        | values                                                              |
|                        |                                                                     |
|                        | CLO 3: Students are able to analyze the stability and occurrence    |
|                        | of dynamic system bifurcations                                      |
|                        |                                                                     |
|                        | CLO 4: Students are able to simplify the system by normalizing      |
|                        | and establishing a manifold center                                  |
|                        |                                                                     |

|                                                             | CLO 5: Students are able to analyze system stability with delay  CLO 6: Students are able to work together in analyzing dynamic |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                             | systems and present them in written and oral form well                                                                          |
| Content                                                     | This course examines the behavior of dynamic systems in the form of                                                             |
|                                                             | ordinary differential equations, both linear and non-linear by                                                                  |
|                                                             | identifying systems to determine parameter values, analysis of                                                                  |
|                                                             | stability and system bifurcation.                                                                                               |
| Study and examination requirements and forms of examination | In-class exercises                                                                                                              |
|                                                             | Assignment 1, 2, 3                                                                                                              |
|                                                             | Mid-term examination                                                                                                            |
|                                                             | Final examination                                                                                                               |
| Media employed                                              | LCD, whiteboard, websites (myITS Classroom), zoom.                                                                              |
| Reading list                                                | Main:                                                                                                                           |
|                                                             | 1. Wiggins, S. 2009, "Introduction to Applied Non Linear Dynamical System and Chaos- second edition", Springer-Verlag           |
|                                                             | 2. Xiaoxin Liao, Wang, L. And Pei Yu, 2007, "Stability of System Dynamic", Elsivier                                             |
|                                                             | Supporting:                                                                                                                     |
|                                                             | -                                                                                                                               |