

MODULE HANDBOOK DISCRETE MATHEMATICS

BACHELOR DEGREE PROGRAM
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK DISCRETE MATHEMATICS

Module name	Discrete Mathematics
Module level	Bachelor
Code	KM184304
Course (if applicable)	Discrete Mathematics
·	Fall (Gasal)
	Drs. Soetrisno, MIKomp
the module	
Lecturer	Drs. Soetrisno, MIKomp
	Drs, Bandung Arry Sanjoyo, MIKomp
	Drs. Daryono Budi Utomo, M.Si
	Bahasa Indonesia and English
	Bachelor degree program, mandatory , 3 rd semester.
Type of teaching, I contact hours	Lectures, <60 students
	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per
	week.
	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
	3 credit points (sks)
•	A student must have attended at least 80% of the lectures to sit in
'	the exams.
examination	
regulations	
Mandatory A	Algorithms and Programming
prerequisites	
Learning outcomes (Course Learning Outcome (CLO) after completing this
and their r	module,
corresponding PLOs (CLO-1: Students are able to understand discrete objects,
	analyze, construct an argument in discrete structure
	problems, and can apply them to solve discrete structured
	problems.
	CLO-2 : Students are able to explain the connection of
	basic concepts of discrete mathematics with other
	branches of science.
Content	This course discusses the problem of sets, relations and functions,
	introducing graphs, recurring relations, and introducing combinatorics. As a
	support for the data structure courses, graph theory, and combinatoric

Module Handbook: Mathematical Logic - 2

	analysis. To measure student ability, evaluation is carried out in the form of
	quizzes, exams, and individual and group assignments
Study and examination	Assignment 1 & 2Mid-term examination
requirements and forms of examination	Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	Main: 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications" 7th ed., McGraw-Hill, 2011
	 Supporting: Grimaldi, R. P., "Discrete and Combinatorial Mathematics" 5th ed., Addison-Wesley Publ. Co., 2006. Liu, C. L. and DP Mohepatra, "Elements of Discrete Mathematics", 3rd ed., McGraw-Hill Inc., 2008.