

## MODULE HANDBOOK DINAMICAL OPTIMIZATION

## MASTER DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

## MODULE HANDBOOK DINAMICAL OPTIMIZATION

| Module name            | Dinamical optimization                                              |
|------------------------|---------------------------------------------------------------------|
| Module level           | Master                                                              |
| Code                   | KM185275                                                            |
| Course (if applicable) | Dinamical optimization                                              |
| Semester               | Spring (Genap)                                                      |
| Person responsible for | Subchan, S.Si, M.Sc., Ph.D.                                         |
| the module             |                                                                     |
| Lecturer               | Subchan, S.Si, M.Sc., Ph.D.                                         |
| Language               | Bahasa Indonesia and English                                        |
| Relation to curriculum | Master degree program, 2 <sup>nd</sup> semester.                    |
| Type of teaching,      | Lectures, <60 students                                              |
| contact hours          |                                                                     |
| Workload               | 1. Lectures : 2 x 50 = 100 minutes per week.                        |
|                        | 2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hours) per   |
|                        | week.                                                               |
|                        | 3. Private learning: 2 x 60 = 120 minutes (2 hours) per week.       |
| Credit points          | 2 credit points (sks)                                               |
| Requirements           | A student must have attended at least 80% of the lectures to sit in |
| according to the       | the exams.                                                          |
| examination            |                                                                     |
| regulations            |                                                                     |
| Mandatory              | -                                                                   |
| prerequisites          |                                                                     |
| Learning outcomes      | Course Learning Outcome (CLO) after completing this                 |
| and their              | module,                                                             |
| corresponding ILOs     | [C3] Students are able to analyze mathematical problems             |
|                        | in one of the fields: analysis, algebra, modeling, system,          |
|                        | optimization or computing sciences                                  |
|                        | [C4] Students are able to work and research                         |
|                        | collaboratively on mathematical problems within either              |
|                        | the area of pure mathematics or applied mathematics or              |
|                        | computing sciences                                                  |
|                        | [C5] Students are able to communicate and present                   |
|                        | mathematical ideas with clarity and coherence, both                 |
|                        | written and verbally                                                |
| Content                | Discussion subjects include an assessment of dynamic optimization   |
|                        | basics of calculus of variations, optimal control, modeling,        |
|                        | basies of calculus of variations, optimal control, modeling,        |

|                      | application, simulation and computing. In the learning process in the  |
|----------------------|------------------------------------------------------------------------|
|                      | classroom, students will learn to identify the real problems,          |
|                      | modeling, and finish it. In addition to self-directed learning through |
|                      | tasks, learners are directed to cooperate in group work and write      |
|                      | scientific papers in the form of paper.                                |
| Study and            | In-class exercises                                                     |
| examination          | Assignment 1, 2, 3                                                     |
| requirements and     | Mid-term examination                                                   |
| forms of examination | Final examination                                                      |
| Media employed       | LCD, whiteboard, websites (myITS Classroom), zoom.                     |
| Reading list         | Main:                                                                  |
|                      | 1. Naidu, D.S, "Optimal Control Systems", CRC Press, 2002.             |
|                      | 2. Subchan, S and Zbikowski, R., "Computational Optimal Control:       |
|                      | Tools and Practice", Wiley, 2009.                                      |
|                      | 3. Lewis, F. dan Syrmos Vassilis, "Optimal Control", John Wiley &      |
|                      | Sons, Singapore, 1995.                                                 |
|                      | 4. Suzanne Lenhart, John T. Workman, "Optimal Control Applied          |
|                      | to Biological Models", CRC Press, 2007.                                |
|                      | 5. Krasnov, M.L., Makarenko, G.I, dan Kiselev, A.I., Problems and      |
|                      | Exercises in the Calculus of Variations , MIR Publisher Moskow,        |
|                      | 1975.                                                                  |
|                      | 6. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization,        |
|                      | Estimation and Control, Taylor and Francis Group, 1975.                |
|                      |                                                                        |
|                      | Supporting:                                                            |
|                      | 1. Kamien, ML and Schwartz, N.L., "Dynamic Optimization",              |
|                      | North-Holland, Amsterdam, 1993.                                        |
|                      | 2. Lewis F., "Optimal Estimation", John Wiley & Sons, Singapore,       |
|                      | 1986.                                                                  |

