

MODULE HANDBOOK

Biological Mathematics

MASTER DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK

Biological Mathematics

Module name	Biological Mathematics
Module level	Master
Code	KM185372
Course (if applicable)	Biological Mathematics
Semester	Fall (Ganjil)
Person responsible for	Dr. Dieky Adzkiya
the module	
Lecturer	Dr. Dieky Adzkiya
Language	Bahasa Indonesia and English
Relation to curriculum	Master degree program, elective , 3 rd semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per
	week.
	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	-
prerequisites	(2) 2) 5
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding ILOs	CLO-1 : Able to understand the problem of a continuous
	population model in the form of diffusion reactions and to
	analyze system behavior
	CLO-2: Able and master the meaning of pupolation
	interactions as a transmission function in the dispersion
	model
	CLO-3 : Able to construct a discrete model of the
	phenomenon of the object of observation.
	CLO-4 : Able to make research projects related to the
	diffuse reaction model and to publish
Content	Continuous Population Model

	Discrete Population Model
	Population Interaction Models
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2, 3 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading list	 Marco Di Francesco,2010." Mathematical models in life science" Eduardo D. Sontag, 2006," Lecture Notes in Mathematical Biology" Rutgers University D. W. Hughes,J. H. Merkin,R. Sturman,2004." Lecture Notes in Analytic Solutions of Partial Differential Equations" School of Mathematics, University of Leeds F Brauer C. –Chavez, 2012." Mathematical Models in Population Biology and Epidemiology", Texts in Applied Mathematics, Springer Science Business Media