Department of Mathematics Institut Teknologi Sepuluh Nopember

email: matematika@its.ac.id - web: https://www.its.ac.id/matematika

Course	Course Name	: Artificial Neural Network
	Course Code	: KM184828
	Credit	: 2
	Semester	: 8

Description of Course

The course of artificial neural networks is a course that studies computational algorithms that mimic how biological neural networks work. This course is part of the Data Science, because the algorithm learned works well when applying data processing.

PLO	[C3] Students are able to solve simple and practical problems by	
2	applying basic mathematical statements, methods and computations	
PLO 3	[C4] Students are able to analyze simple and practical problems in at	
	least one field of analysis, algebra, modeling, system optimizations	
	and computing sciences	
PLO 4	[C5] Students are able to work on a simple and clearly defined	
	scientific task and explain the results, both written and verbally either	
	on the area of pure mathematics or applied mathematics or computing	
	sciences	

Course Learning Outcome

- 1. Students are able to explain in any field the application of ANN
- 2. Students are able to analyze the simplest ANN algorithm to recognize AND, OR, NAND and NOR logic patterns.
- 3. Students are able to well explain the different implementation of ANN algorithm with 1 processing element and multi processing element.

- 4. Students are able to properly explain the network capable of storing memory
- 5. Students are able to properly explain the basic concepts of competition-based networks and problems that the network can solve
- 6. Students are able to explain the difference between the concept of backpropagation and varietin network algorithms
- 7. Students are able to properly examine the scientific work on the ANN application

Main Subject

- 1. Modeling of artificial neural networks from biological neural networks,
- 2. A simple pattern recognition with Perceptron, Hebb and Adaline,
- 3. Character recognition with Percepron, Associative memories,
- 4. Classification with BP, and LVQ,
- 5. Clustering with Kohonen SOM,
- 6. Forecasting BP, and RBF
- 7. Alternative model of ANN

Prerequisites

Linear Algebra Elementer Computer Programming

Reference

1. Irawan, M. Isa, "Dasar-Dasar Jaringan Syaraf Tiruan", Penerbit ITS Press, 2013

Supporting Reference

- 1. Laurene Fauset, "Fundamental of Artificial Neural Networks", Penerbit Prentice Hall, 1994
- James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Penerbit Addison Wesley, 1991
- 3. Simon Haykin, "Kalman Filtering and Neuralnetwork", Penerbit John Wiley & Sons, 2001