

MODULE HANDBOOK Approximation Theory

MASTER DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK Approximation Theory

Module name	Fuzzy Systems
Module level	Master
Code	KM185211
Course (if applicable)	Fuzzy Systems
Semester	Spring (Genap)
Person responsible for	Dr. Imam Mukhlash, S.Si, MT
the module	
Lecturer	Dr. Imam Mukhlash, S.Si, MT
Language	Bahasa Indonesia and English
Relation to curriculum	Master degree program, elective, 3 rd semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per
	week.
	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding ILOs	CLO- 1: Being able to understand the main points of the
	classical approximation theory as a basis approximation
	method development and application.
	CLO – 2 : Being able to explain the advantages of some of the
	best approximation method
	CLO – 3: Being able to apply some approximation methods in
	solving problems related approximation.
Content	This course discusses the main frame of approximation theory, with an
	emphasis on classical topics related to polynomial and rational functions,
	along with computational approaches. The main discussion begins from Weierstass Approximation Theorem, which includes a discussion interpolan
	Chebyshev, polynomials and Chebyshev series. Then on the best
	Chebyshev, polyhorniais and Chebyshev Series. Then on the best

	approximation that includes the convergence function convergence diferensiabel and analytic functions. While the last part will discuss topics relating to spectral methods and accelerated convergence.
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2, 3 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading list	 Main: Trefethen, LN, Approximation Approximation Theory and Practice, SIAM, 2013 christensen, O. and Christensen, KL, Approximation Theory, Birkhauser, 2005