

MODULE HANDBOOK ALGEBRA I

BACHELOR DEGREE PROGRAM
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND DATA ANALYTICS
INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK ALGEBRA I

NA a de da mana a	Alashus I
Module name	Algebra I
Module level	Undergraduate
Code	KM184402
Course (if applicable)	Algebra I
Semester	Spring (Genap)
Person responsible for	Prof. Dr. Drs. Subiono, MS
the module	
Lecturer	Prof. Dr. Drs. Subiono, MS
	Drs. Komar Baihaqi, M.Si
	Dian Winda Setyawati, S.Si, M.Si
	Soleha, S.Si, M.Si
Language	Bahasa Indonesia and English
Relation to curriculum	Undergraduate degree program, mandatory, 4 th semester.
Type of teaching,	Lectures, <60 students
contact hours	Tuesdays, 11.00-12.50 (GMT+7)
Workload	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per
	week.
	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations	
Mandatory	-
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO 1: Students are able to develop and apply math and
	be able to communicate actively in both oral and written
	communication
	CLO 2: Students are able to explain basic and advanced
	principles of the theories learned, particularly the
	structure of a finite group and are capable of performing
	symbolic computations
	Symbolic computations

	CLO 3: Students are able to creatively explain about the application of Algebra I in the related fields CLO 4: Students are able to present their knowledge in
	Algebra I independently or in a team.
Content	The course of Algebra I covers the study of Relations, Functions and Groups, Subgroups and Generators, Smallest Subgroups, Permutation Groups, Normal Groups and Factor Groups, Group Homomorphisms, Direct Internal and External Products and the Cayley Theorem. During the lectures, SAGEMATH software is used to equip students with the ability to perform symbolic computations related to group problems. In the in-class learning process, students will learn to identify problems, formulate symbolic mathematical ideas and express them in written form. Other than conducting independent learning through assignments, students are directed to work together in a group.
Study and	In-class exercises
examination	Assignment 1, 2, 3
requirements and	Mid-term examination
forms of examination	Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading list	Main:
	1. Subiono, "Catatan Kuliah : ALJABAR I", Jurusan Matematika FMIPA-ITS, 2014.
	 Randall B. Maddox," A Transition to Abstract Mathematics, Learning Mathematical Thinking and Writing, 2nd Edition", Academic Press, (2009) Joseph A. Gallian, "Contemporary Abstract Algebra", 7th Edition, D.C. Heath and Company, (2010)
	Supporting: 1. Derek J. S. Robinson, "An Introduction to Abstract Algebra", Walter de Gruyter, (2003).
	2. William Paulsen," Abstract Algebra, An Interactive Approach", CRC Press, (2010)
	3. Robert A. Beezer," Sage for Abstract Algebra, A Supplement to Abstract Algebra, Theory and Applications ", Department of Mathematics and Computer Science University of Puget Sound, (2012)