MODULE HANDBOOK PHYSICS 2

Module name	Physics 2	
Module level	Undergradute	
Code	SF184202	
Course (if applicable)	Physics 2	
Semester	Second Semester (Genap)	
Person responsible for	Mariyanto, S.Si., M.T.	
the module		
Lecturer	ITS Physics Lecturer Team	
Language	Bahasa Indonesia	
Relation to curriculum	Undergradute degree program, mandatory, 2 nd semester.	
Type of teaching,	Lectures, <60 students	
contact hours		
Workload	1. Lectures: 3 x 50 = 150 minutes per week.	
	2. Exercises and Assignments : 2 x 60 = 120 minutes (2 hou	rs) per
	week.	
	3. Private learning: 2 x 60 = 120 minutes (2 hours) per wee	k.
Credit points	3 credit points (sks)	
Daguinamanta	A student would be used to add at least 75% of the least used	- ait in
Requirements	A student must have attended at least 75% of the lectures to sit in	
according to the examination	the exams.	
regulations Mandatory		
prerequisites	-	
Learning outcomes	CLO 1 Students understand particles that compose a matter	
and their	and it's electrical properties, substantial of conductor and	
corresponding PLOs	dielectric	Not
corresponding r Los	CLO 2 Students understand the strength of an electric field	mention
	based on Coulomb force and Gauss's law	ed
	CLO 3 Students are able to understand various forms of electric	cu
	potential in charged conductors	
	CLO 4 Students understand the capacitance principle of various	
	form of capacitor in capacitor circuits, series, parallel and mixed	
	CLO 5 Able to use magnetic field force formulas for electric	
	currents and moving charges	
	CLO 6 Able to mention the role of magnetization in magnetic	
	material and hysteresis loop.	
	CLO 7 Understand the principle of electromotive force	
	emergences, and current in resistor, capacitor and inductor	

Module Handbook: Physics 2 -2

	CLO 8 Able to determine magnitude of the impedance, electric current and phase angle in parallel and series circuit R-L, R-C, RL-C	
Content	In this course students will learn to understand the basic laws of physics, Electric Field; Electric Potential; Electric current; Magnetic field; Electriomotive Force (EMF) of Induction and Alternating Current, through simple math descriptions and introducing the examples of concepts usage	
Study and examination requirements and forms of examination	 In-class exercises Assignment 1, 2, 3 Mid-term examination Final examination 	
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.	
Reading list	 Main: Halliday & Resnic; 'Fundamental of Physics'. John Wiley and Sons, New York, 1987 Tim Dosen, "Diktat Fisika II", "Soal-soal Fisika II", Fisika FMIPA-ITS 	
	3. Giancoli, DC., (terj, Yuhilza H), 'Fisika, jilid 2', Ertangga, Jakarta, 2001.	
	Supporting:	
	 Alonso & Finn, "Fundamental University Physics", Addison Wesley Pub Comp Inc, 1`.ed, Calf, 1990 Tipler, PA, (ted. L Prasetio dan R.W.Adi), "Fisika: untuk Sains dan Teknik, Jilid 2", Erlangga, Jakarta, 1998 	