UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF INTELLIGENT ELECTRICAL AND INFORMATICS TECHNOLOGY

Module name	Computer Vision	
Module level	Undergraduate	
Code	EC184604	
Courses (if applicable)	Computer Vision	
Semester	6 / Spring (Genap)	
Contact person	Dr. Eko Mulyanto	
Lecturer	Dr. Eko Mulyanto	
Language	Indonesia	
Relation to curriculum	Undergraduate degree program, mandatory, 6 th semester.	
Type of teaching, contact hours	Lecture, < 60 students, 170 minutes * SKS	
Workload	1. Lectures: 3 x 50 = 150 minutes (2.5 hours) per week.	
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hour	rs) per
	week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week.	
Credit points	3 credit points (sks).	
Requirements according to the	A student must have attended at least 75% of the lectures to the exams.	o sit in
examination		
regulations		
Mandatory		
prerequisites	CLO 1 Students are able to evaluin computer vision	PLO-3
Learning outcomes and their	CLO-1 Students are able to explain computer vision concepts	PLO-4
corresponding	CLO-2 Students are able to describe intuitively and	PLO-3
PLOs	mathematically the geometry and physics of image formation.	PLO-4
	CLO-3 Student are able to implement convolution and understand what kind of filtering operations can be implemented as a convolution	PLO-5
	CLO-4 Students are able to implement computer vision algorithms in to solve the problem in the topic of reconstruction and recognition the object from image and video.	PLO-6
Content	In this course, students will learn about computer vision concepts, and usage of stereo camera and its problems.	

Study and examination requirements and forms of examination	 In-class exercises Quiz 1 and 2 Assignment 1, 2, 3 Mid-term examination Final examination 	
Media employed	LCD, whiteboard, websites (myITS Classroom).	
Assessments and Evaluation	CO-1: Question no 1 in midterm exam (15%) CO-2: Question no 2 in midterm exam (15%) CO-3: Assignment 1 (5%), question no 4 in midterm exam (20%), Quiz 2 (5%) CO-4: Question no 1 in final exam (20%), question no 2 in final exam (20%)	
Reading List	 Forysh, Ponce, "Computer Vision Modern Approach ", Prentice Hall 2003 Nikos Paragios, Yunmey Chen, "Handbook Of Mathematical Model in Computer Vision", Springer,2006 Steven Harrington, "Computer Graphics A Programming Approach Second Edition", McGraw-Hill International Editions1987. Max K. Agoston, MA, MS, PhD, "Computer Graphics and Geometric Modeling Implementation and Algorithms", SpringerVerlag London 2005 	