UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF INTELLIGENT ELECTRICAL AND INFORMATICS TECHNOLOGY

Module name	Machine Learning		
Module level	Undergraduate		
Code	EC184503		
Courses (if applicable)	Machine Learning		
Semester	5 / Fall (Gasal)		
Contact person	Prof.Dr.Ir. Mauridhi Hery Purnomo, M.Eng		
Lecturer	Prof.Dr.Ir. Mauridhi Hery Purnomo, M.Eng		
	Indonesia / English		
Language Relation to	Undergraduate degree program, mandatory, 5 th semester.		
curriculum	Ondergraduate degree program, mandatory, 5 ** semester.	•	
Type of teaching,	Lecture, < 60 students, 170 Minutes * 3 SKS		
contact hours	Lecture, < 00 students, 170 minutes = 3 3k3		
Workload	1. Lectures: 3 x 50 = 150 minutes (2.5 hours) per week.		
VVOIRIOUU	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hor	urs) ner	
	week.	uis, pei	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks).		
Requirements	A student must have attended at least 75% of the lectures to sit in		
according to the	the exams.		
examination			
regulations			
Mandatory			
prerequisites			
Learning outcomes	CLO-1 Students are able to explain machine learning	PLO-3	
and their	concept and state of the art	PLO-4	
corresponding PLOs	CLO-2 Students are able to use machine learning	PLO-3	
	techniques to Recognizing Pattern	PLO-3	
	techniques to necognizing Pattern	1 20 4	
	CLO-3 Students are able to explain the various ways of	PLO-3	
	deep learning techniques to Recognizing Pattern	PLO-4	
		_	
	CLO-4 Students are able to use machine learning	PLO-5	
	programming that can be applied to the design	PLO-6	
	system		
Content	In this course, students will learn about machine learning a	and its	
	application in the real world. Topics include linear prediction,		
	linear regression, non-linear regression, Bayesian learning,		
	Gaussian process, Bayesian optimization, decision tree, rai		
	forests, gradient descent, importance sampling, neural net	twork,	
	and Markov chain Monte Carlo (MCMC).		

Study and	In-class exercises	
examination	Quiz 1 and 2	
requirements and	Assignment 1, 2, 3	
forms of examination	Mid-term examination	
	Final examination	
Media employed	LCD, whiteboard, websites (myITS Classroom).	
Assessments and	CO-1: Question no 1 in midterm exam (15%)	
Evaluation	CO-2: Question no 2 in midterm exam (15%)	
	CO-3: Assignment 1 (5%), question no 4 in midterm exam (20%), Quiz 2 (5%)	
	CO-4: Question no 1 in final exam (20%), question no 2 in final exam (20%)	
Reading List	1. Kevin Patrick Murphy, "Machine Learning: a Probabilistic	
	Perspective", fourth edition (Sept 2013), MIT Press.	
	2. Chris Bishop, "Pattern Recognition and Machine Learning", Springer 2006.	
	3. Trevor Hastie, Robert Tibshirani and Jerome Friedman. "The	
	elements of statistical learning", Springer 2001.	
	4. Larry Wasserman, "All of Statistics, Springer 2004.	
	5. David Mackay, "Information theory, inference and learning	
	algorithms", CUP 2003	
	6. Jim Albert, "Bayesian Computation with R", Springer 2007.	
	7. Duda, Hart, Stork, "Pattern Classification (2nd ed.)", Wiley 2001.	