UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF INTELLIGENT ELECTRICAL AND INFORMATICS TECHNOLOGY

Module name	Digital Circuits and Lab		
Module level	Undergraduate		
Code	EC184405		
Courses (if applicable)	Digital Circuits and Lab		
Semester	4 / Spring (Genap)		
Contact person	Ahmad Zaini, S.T, M.Sc.		
Lecturer	Ahmad Zaini, S.T, M.Sc.		
	Ir. Hanny Budinugroho, MT.		
Language	Indonesia		
Relation to	Undergraduate degree program, mandatory, 4th semeste	r.	
curriculum			
Type of teaching,	Lecture, < 60 students, 230 MENIT 4 SKS		
contact hours			
Workload	1. Lectures: 4 x 50 = 200 minutes (3.3 hours) per week.		
	2. Exercises and Assignments: 4 x 60 = 240 minutes (4 ho	ours) per	
	week.		
	3. Private study: 4 x 60 = 240 minutes (4 hours) per wee	k	
Credit points	4 credit points (sks).		
Requirements	A student must have attended at least 75% of the lectures to sit in		
according to the	the exams.		
examination			
regulations			
Mandatory			
prerequisites			
Learning outcomes	CLO-1 Students are able to explain how SSI digital	PLO-3	
corresponding PLOs	well as MSI and LSI components.		
	CLO-2 Students are able to declare digital circuits into	PI O-5	
		1 20 0	
	ivisi, and Esi components.		
	CLO-3 Students are able to manipulate digital	PLO-6	
	functions using Boolean algebra to obtain		
	simple or expanded forms (canonical) to obtain		
	optimal combinational circuits.		
		DI O C	
	·		
		PLO-9	
	circuits.		
and their corresponding PLOs	functions using Boolean algebra to obtain simple or expanded forms (canonical) to obtain	PLO-5 PLO-6 PLO-6 PLO-9	

Content	In this course, students will learn about digital circuit synthesis and analysis, both combinational and sequential.	
Study and examination requirements and forms of examination	 In-class exercises Quiz 1 and 2 Assignment 1, 2, 3 Mid-term examination Final examination 	
Media employed	LCD, whiteboard, websites (myITS Classroom).	
Assessments and Evaluation	CO-1: Question no 1 in midterm exam (10%) CO-2: Question no 2 in midterm exam (10%) CO-3: Question no 3 in midterm exam (10%), quiz 1 (5%) CO-4: Assignment 1 (5%), question no 4 in midterm exam (10%), Quiz 2 (5%) CO-5: Question no 1 in final exam (10%), question no 2 in final exam (10%) CO-6: Assignment 2 (5%), question no 3 in final exam (10%) CO-7: Assignment 3 (5%), question no 4 in final exam (5%)	
Reading List	 Richard F. Tinder, "ENGINEERING DIGITAL DESIGN", Academic Press – Elsevier, 2000 John F. Wakerly, "Digital Design: Principles and Practices", Elsevier, 2014 	