Number	Р3
Project title:	Artificial-Intelligence Impulse Radar Signal Analysis and CMOS RFIC
Description of the research (within 300 words)	This research is focused on ground penetrating system by impulse radar system with deep learning algorithm. It not only handles with hardware, but also integrates with the knowledge of signal analysis. The students who are familiar one of the skills such as matlab programming or instrument data extraction tool are preferred. Another topic "CMOS RFIC" is provided for the
	students interested at the RF intergarted circuit design.
Mentor in CCU	Associate Prof. Janne-Wha Wu Dept. of Communications Engineering, National Chung Cheng University, Taiwan, ROC. (jwwu@ccu.edu.tw)
Expected student level	☐ Post-graduate student ☐ Third/forth-year undergraduate senior student ☐ Both
Intern period	At least 8 weeks between March 1 and Aug. 31
Category	■ A: Scholarship■ B: Self-supported

Number	P4
Project title:	Implementation of evaluation scenario in 5G/B5G
	communication of IMT-2020
Description of the research	This project is to build topologies and derive
(within 300 words)	environmental channel conditions in several generally
	accepted scenarios which contain focused 5G/B5G
	challenges in the IMT-2020, such as very high data
	rate, high reliability, low latency and very dense
	crowds. These scenarios include indoor offices, dense
	urban environment, and urban macro base stations. In
	this intern, you will learn performance evaluation and
	visualization of future 5G/B5G communication
	systems in IMT-2020.
Mentor in CCU	Prof. Jen-Yi Pan
	Dept. of Communications Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(e-mail: jypan@ccu.edu.tw)
Expected student level	Post-graduate student
	☐ Third/forth-year undergraduate senior student
	Both
Intern period	At least 3 months between March 1 and Aug. 31
Category	☐ A: Scholarship
	B: Self-supported

Number	P5
Project title:	Visual and skeleton-based action recognition based on
	deep learning approach
Description of the research	This research is to recognize human's action (stand,
(within 300 words)	walk, run, fall-down, talking, etc.) from the single-view
	video or skeleton data. Our approach will be based on
	machine learning techniques such as CNN, RNN, or
	LSTM (deep learning). This technique is useful in video
	surveillance or health care center to monitor persons'
	daily life. The intern student is expected to have some
	preliminary knowledge on NN (neural network) or deep
	learning and skilled in C/C++ or Python programming.
	He/She will learn how to apply state-of-the-art deep
	learning techniques to solve the indicated problems.
Mentor in CCU	Prof. Wen-Nung Lie
	Dept. of Electrical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(ieewnl@ccu.edu.tw)
Expected student level	Post-graduate student
	☐ Third/forth-year undergraduate senior student
	Both
Intern period	At least 8 weeks between March 1 and Aug. 31
Category	A: Scholarship (partial, 50%~100%)
	B: Self-supported

Number	P6
Project title:	Content-aware 360 degree video coding
Description of the research	This research is about the 360 degree video coding
(within 300 words)	system. Capturing the scene and representing it with
	efficient panoramic images will be first addressed.
	Then a saliency video is generated and served as a
	guidance for efficient 360 degree video coding to offer
	high quality video. In this summer internship, the
	intern not only learn C/C++ programs to implement
	the proposed techniques, related deep learning
	platform is also accessed.
Mentor in CCU	Prof. Jui-Chiu Chiang
	Dept. of Electrical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(rachel@ccu.edu.tw)
Expected student level	Post-graduate student
	Third/forth-year undergraduate senior student
	Both
Intern period	At least 12 weeks between March 1 and Aug. 1
Category	A: Scholarship
	B: Self-supported

Number	P7
Project title:	Saliency-driven Tone Mapping for HDR Image
	Display Using Deep Learning
Description of the research	This research is about the tone mapping (TM)
(within 300 words)	technique. To enable the display of HDR image on the
	conventional device, TM technique is needed. TM
	techniques will preserve the details of the HDR image
	as much as possible while allowing pleasing visual
	experience. To better retain the details of the HDR
	image, a saliency driven TM is investigated in this
	research. In addition, the derived TM model is
	generated based on a deep learning architecture.
Mentor in CCU	Prof. Jui-Chiu Chiang
	Dept. of Electrical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(rachel@ccu.edu.tw)
Expected student level	☐ Post-graduate student
	Third/forth-year undergraduate senior student
	Both
Intern period	At least 12 weeks between March 1 and Aug. 1
Category	A: Scholarship
	B: Self-supported

Number	P8
Project title:	The structure design of modern generators and motors
Description of the research	This research is to design the structure of modern
(within 300 words)	generators and motorsusing Finite Element
	Method(FEM) and electromagneticmethod. The
	candidates need some background and experience for
	FEM or motor design. Additionally, the candidates
	must have good capability on English reading and
	writing.
Mentor in CCU	Prof. Yuan-Kang Wu
	Dept. of Electrical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(allenwu@ccu.edu.tw)
Expected student level	Post-graduate student
	☐ Third/forth-year undergraduate senior student
	■ Both
Intern period	At least 8weeks between March1 and Aug. 31
Category	A:Scholarship
	B: Self-supported

Number	Р9
Project title:	Thermal characterization for atmospheric-pressure
7	microsecond pulsed helium discharges
Description of the research	Atmospheric-pressure helium plasmas have been
(within 300 words)	developed extensively in the last two decades for
	various biomedical applications such as wound
	healing, cancer treatment, and sterilization due to the
	efficient generation of reactive species. Discharge
	temperature is one of the major concerns for
	applications with discharge treating human tissues.
	This project will conduct thermal analysis for an atmospheric-pressure microsecond pulsed helium
	discharges including experimental measurements and
	numerical simulations. The temperature distribution
	of the reactor surface will be measured via the the
	rotational spectra (i.e., $N_2(C \rightarrow B)$) collected by the
	spectrometer. A computational fluid dynamic (CFD)
	model will be built with the heating source evaluated
	by the plasma fluid model to simulate the temperature
	distribution within the reactor. The simulated results
	will be validated and the plasma heating mechanisms
N	will be studied.
Mentor in CCU	Prof. Kun-Mo Lin
	Dept. of Mechanical Engineering
	National Chung Cheng University, Taiwan, ROC. (e-mail: imekml@ccu.edu.tw)
Expected student level	Post-graduate student
Expected student level	Third/forth-year undergraduate senior student
	Both
Intom noviod	
Intern period	At least 2 months between March 1 and Aug. 31
Category	A: Scholarship
	B: Self-supported

Number	P10
Project title:	Study on the effect of operating conditions on the
	performance of an open cathode fuel cell
Description of the research	The performance of the fuel cell with an open cathode
(within 300 words)	is affected by the supplied gas properties, such as flow
	rate, temperature, and humidity. Students need to
	understand the principle of fuel cells and factors that
	influence of fuel cell. In this research, student will
	conduct experiments to investigate the performance of
	a fuel cell under various operating conditions.
Mentor in CCU	Prof. Yong-Song Chen
	Dept. of Mechanical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(e-mail: imeysc@ccu.edu.tw)
Expected student level	☐ Post-graduate student
	☐ Third/forth-year undergraduate senior student
	Both
Intern period	At least 8 weeks between March 1 and August 31
Category	A: Scholarship
	B: Self-supported

Number	P11
Project title:	Friction Stir Additive Manufacturing (FSAM) Process
Description of the research (within 300 words)	This work focuses on a development of a solid state welding and additive manufacturing technique by applying the friction stir welding to 3D solid state friction stir additive manufacturing (FSAM) to attain microstructure refinement and structural integrity and efficiency. The scope of this work for the summer interns includes equipment modification, innovative jig & fixture design, new tool design for lap stir joint of stacked layers of sheet metal combination, setup of parameter-windows, microstructure study and materials test.
Mentor in CCU	Prof. Jong-Ning Aoh Dept. of Mechanical Engineering, National Chung Cheng University, Taiwan, ROC. (imejna@ccu.edu.tw)
Expected student level	☐ Post-graduate student ☐ Third/forth-year undergraduate senior student ☐ Both Note: students who will graduate in 2020 will not be considered
Intern period	At least 3 months between JUNE 20 and Aug. 31
Category	■ A: Scholarship■ B:Self-supported

Number	P12
Project title:	Bobbin Friction Stir Welding process development
Description of the research	This work focuses on a development of a solid state
(within 300 words)	welding process with self-supporting stir tool. The
	scope of this work for the summer interns includes
	equipment modification, innovative jig & fixture
	design, new tool design for lap stir joint of stacked
	layers of sheet metal combination, setup of parameter-
	windows, microstructure study and materials test.
Mentor in CCU	Prof. Jong-Ning Aoh
	Dept. of Mechanical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(imejna@ccu.edu.tw)
Expected student level	☐ Post-graduate student
	☐ Third/forth-year undergraduate senior student
	Both
	Note: students who will graduate in 2020 will not be
	considered
Intern period	At least 3 months between JUNE 20 and Aug. 31
Category	A: Scholarship
	■ B:Self-supported

Number	P13
Project title:	Interdisciplinary opto-mechanical integration
Description of the research	Our research is mainly for cross-domain integration
(within 300 words)	research, such as integration of semiconductor solar
	photovoltaic components and single-cell biochips, to
	achieve self-powered biochips, integration of various
	micro-nano process technologies such as laser
	interference lithography, anodized aluminum, nano
	Imprinting technology on solar cells, light-emitting
	diode components and the development of novel
	optical analysis techniques on two-dimensional
	materials, in the study of cross-domain integration, the
	study of basic physical mechanisms is very important,
	such as electronic hole pairs The relationship between
	transmission and the polarity of cancer cells, the
	mechanism of the surface microstructure of the
	surface for the generation of surface plasma waves, and the interaction between the atomic layer and the
	atomic layer in two-dimensional materials. These
	basic mechanisms involve physics, chemistry,
	materials, optics and other related fields. Interactions,
	and there are still many unclear issues on the subject
	of these studies. If you can further solve these
	mysteries, you can make a considerable contribution
	to both basic science and engineering.
Mentor in CCU	Prof. Hsiang-Chen Wang
	Dept. of Mechanical Engineering,
	National Chung Cheng University, Taiwan, ROC.
	(hcwang@ccu.edu.tw)
Expected student level	Post-graduate student
	☐ Third/forth-year undergraduate senior student
	Both
Intern period	At least 8 weeks between March 1 and August 31
Category	A: Scholarship
	B:Self-supported