

1

1

DAFTAR ISI
TIM PENYUSUN MODUL PRAKTIKUM .. 2

TUJUAN UMUM PRAKTIKUM ... 3

Praktikum 1 ESP32-S3 ModBus RTU ... 4

I. DASAR TEORI .. 5

II. KEBUTUHAN PRAKTIKUM .. 11

III. PROSEDUR PRAKTIKUM .. 12

IV. PERTANYAAN PRAKTIKUM .. 15

V. ANALISA & KESIMPULAN ... 15

Praktikum 2 Smart Contract .. 16

I. DASAR TEORI .. 1

II. KEBUTUHAN PRAKTIKUM ... 7

III. PROSEDUR PRAKTIKUM .. 8

IV. PERTANYAAN PRAKTIKUM ... 10

V. ANALISA DAN KESIMPULAN ... 10

Praktikum 3 Integrasi Blockhain ... 11

I. DASAR TEORI .. 12

II. KEBUTUHAN PRAKTIKUM ... 18

III. PROSEDUR PRAKTIKUM .. 19

IV. PERTANYAAN PRAKTIKUM .. 25

V. ANALISA & KESIMPULAN ... 25

2

TIM PENYUSUN MODUL PRAKTIKUM

Program Studi : Teknologi Rekayasa Instrumentasi

Departemen : Teknik Instrumentasi

Fakultas : Vokasi

Institusi : Institut Teknologi Sepuluh Nopember

Semester : 4

Mata Kuliah : Interkoneksi Sistem Instrumentasi

Kode Matkul : VI231418

Tahun Ajaran : 2025/2026

DOSEN PENGAMPU

No Nama NIP/NIDN Peran

1 Ahmad Radhy, S.Si., M.Si 0013118906 Dosen Pengampu

2
Ir. Dwi Oktavianto Wahyu Nugroho,

S.T., M.T.
0008108306 Dosen Pengampu

3 Muhammad Roy Ashiddiqi, S.T., M.T. 199301312024061001 Dosen Pengampu

TIM PENYUSUN

No Nama NRP Peran

1 Faradilla Damayanti 2042221004 Penyusun

2 Muhammad Mishbahul Huda 2042221008 Penyusun

3 Reza Akbar Azary 2042221033 Penyusun

4 Mukhamad Da'ul Azimi 2042221071 Penyusun

5 Nabilla Nurul Pratiwi 2042221083 Penyusun

6 Muhammad Ivan Hermawan 2042221096 Penyusun

7 M Dwi Aswangga Azhari 2042221103 Penyusun

8 Akbar Pria Agung Sukarno 2042221105 Penyusun

9 Alif Devintia Pratiwi Hariyanti 2042221139 Penyusun

10 Galuh Pandu Satrio 2042231019 Penyusun

11 Akhmad Maulvin Nazir Zakaria 2042231028 Penyusun

12 Ahmad Malikul Karim Amrullah 2042231041 Penyusun

13 Lusty Hanna Isyajidah 2042231045 Penyusun

14 Wildan Rizki Auzay 2042231061 Penyusun

15 Naufal Faqiih Ashshiddiq 2042231068 Penyusun

3

TUJUAN UMUM PRAKTIKUM

Mata kuliah Interkonesi Sistem Instrumentasi berada di semester 4 dengan bobot 3 SKS

yang terdiri dari 2 SKS TEORI dan 1 SKS PRAKTIKUM, dimana mata kuliah ini mempunyai

tujuan pembelajaran (CPL MK):

CAPAIAN PEMBELAJARAN MATA KULIAH (CP-MK)

BERDASARKAN KEGIATAN PRAKTIKUM

1
Mahasiswa mampu memahami prinsip komunikasi data instrumentasi menggunakan

Modbus RTU.

2
Mahasiswa mampu melakukan akuisisi data sensor melalui pembacaan register Modbus

dan mengonversi data mentah menjadi satuan fisik.

3
Mahasiswa mampu membentuk dan menstandarkan format data menggunakan struktur data

dan JSON untuk pertukaran data antarsistem.

4
Mahasiswa mampu mengirim data hasil akuisisi ke sistem lain melalui komunikasi jaringan

TCP.

5
Mahasiswa mampu membangun TCP listener untuk menerima data, melakukan parsing,

serta menangani kesalahan komunikasi/format data.

6 Mahasiswa mampu menyimpan data sensor ke database time-series InfluxDB.

7
Mahasiswa mampu memahami konsep dasar smart contract dan menerapkan

pencatatan data melalui event pada jaringan Ethereum lokal.

8
Mahasiswa mampu mengintegrasikan sistem end-to-end dan melakukan validasi

hasil melalui antarmuka web/Web3.

Untuk menunjang tercapainya CPL MK interkoneksi sistem instrumentasi, maka MODUL

praktikum Interkoneksi Sistem Instrumentasi, disusun untuk dapat memberikan pemahaman

kepada mahasiswa tentang cara kerja Web3, Smartcontract, serta Blockchain. Pelaksanaan

praktikum ini umumnya memerlukan beberapa komponen utama seperti Laptop, Sensor, dan

module RS485.

Untuk dapat mengukur tingkat pemahaman mahasiswa, pada praktikum ini dilengkapi

dengan pertanyaan terkait dengan:

- Dasar teori penunjang praktikum

- Gambar ilustrasi rangkaian

- Tahapan dan metodologi percobaan

Proses evaluasi praktikum dilakukan melalui laporan praktikum dalam bentuk soft file

yang berisi hasil percobaan dan jawaban terhadap pertanyaan dalam modul praktikum.

4

Praktikum 1

ESP32-S3 ModBus RTU

5

`

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi

industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi

Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan

aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus

Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk

mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,

kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk

kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke

cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam

pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang

sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan

merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim

secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya

sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil

dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,

membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio

untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani

ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana

yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang

lebih efisien dengan tokio::spawn. Semua kelebihan ini membuat TCP server di Rust

sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

6

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan

bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang

saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan

blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3

Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain

berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh

pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,

pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak

seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3

memiliki sejumlah karakteristik penting:

1. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.

2. Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.

3. Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.

4. Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.

5. Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa

node.

6. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

InfluxDB merupakan salah satu implementasi dari database time-series yang

dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan

data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

7

pencatatan data (write performance) maupun pengambilan data (query performance),

terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang

bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-

series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi

penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi

data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),

serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan

InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi

data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan

pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis

visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa

sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,

Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada

berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan

platform ini ke data source, kemudian mengambil data melalui query yang ditentukan

pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel

pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk

memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah

diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

8

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of

Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah

terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,

mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan

memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU

berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di

udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk

transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART

biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal

diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan

oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi

elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur

komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik

instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

9

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat

(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat half-

duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan

kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat

perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver

diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair

dan pada ujung-ujung bus dipasang termination resistor 120Ω untuk mengurangi pantulan

sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle

bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan

komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),

pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT

modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal

dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung

konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring

instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal

pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,

buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan

banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial

seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga

mendukung I2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor

dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke

modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level

shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi

gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan

pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan

protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi

praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

10

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-

duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

11

II. KEBUTUHAN PRAKTIKUM

Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan

yang diperlukan adalah:

a. PC/ Laptop untuk melakukan praktikum

b. Module RS485

c. Microcontroller ESP32-S3

d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

12

III. PROSEDUR PRAKTIKUM

A. PERCOBAAN

1. Siapkan perangkat: Sensor SHT20 RS485, USB-to-RS485 converter, dan PC/Laptop.

2. Hubungkan kabel RS485: A(+) ke A, B(−) ke B, dan pastikan sensor mendapat supply

sesuai modul.

3. Colok USB-to-RS485 ke PC.

4. Buka terminal dan cek port serial terdeteksi:

ls /dev/ttyUSB*
5. Jika tidak bisa akses port (permission), jalankan:

sudo usermod -aG dialout $USER
logout/login setelah ini

6. Buat project Rust baru:

cargo new modbus_client_tcp
cd modbus_client_tcp

7. Edit Cargo.toml, isi dependency berikut:

[package]
name = "modbus_client_tcp"
version = "0.1.0"
edition = "2021"

[dependencies]
anyhow = "1"
tokio = { version = "1", features = ["full"] }
tokio-modbus = "0.13"
tokio-serial = "5"
serde = { version = "1", features = ["derive"] }
serde_json = "1"
chrono = "0.4"

8. Buka src/main.rs, lalu tempel kode ini (baca 2 input register mulai alamat 1, konversi

/10, kirim JSON ke TCP):

use tokio_modbus::{client::rtu, prelude::*};
use tokio_serial::{SerialPortBuilderExt, Parity, StopBits, DataBits};
use tokio::net::TcpStream;
use tokio::io::AsyncWriteExt;
use serde::Serialize;
use chrono::Utc;
use anyhow::{Result, bail};
use tokio::time::{sleep, Duration};

#[derive(Serialize)]
struct SensorData {

13

 timestamp: String,
 sensor_id: String,
 location: String,
 process_stage: String,
 temperature_celsius: f32,
 humidity_percent: f32,
}

async fn read_sht20(port_path: &str, slave_id: u8) -> Result<(f32, f32)> {
 let builder = tokio_serial::new(port_path, 9600)
 .parity(Parity::None)
 .stop_bits(StopBits::One)
 .data_bits(DataBits::Eight)
 .timeout(std::time::Duration::from_secs(1));

 let port = builder.open_native_async()?;
 let mut ctx = rtu::connect_slave(port, Slave(slave_id)).await?;

 // Input registers addr=1 qty=2 (sesuai spec kamu)
 let resp = ctx.read_input_registers(1, 2).await?;
 if resp.len() != 2 {
 bail!("Response length != 2, got {:?}", resp);
 }

 let temp = resp[0] as f32 / 10.0;
 let rh = resp[1] as f32 / 10.0;
 Ok((temp, rh))
}

async fn send_json_line(tcp_addr: &str, json_line: &str) -> Result<()> {
 let mut stream = TcpStream::connect(tcp_addr).await?;
 stream.write_all(json_line.as_bytes()).await?;
 stream.write_all(b"\n").await?;
 Ok(())
}

#[tokio::main]
async fn main() -> Result<()> {
 let serial_port = "/dev/ttyUSB0"; // hasil langkah 4
 let slave_id = 1u8;
 let tcp_addr = "127.0.0.1:9000"; // server di percobaan 3

 loop {
 match read_sht20(serial_port, slave_id).await {
 Ok((temp, rh)) => {
 println!(" Temp: {:.1} °C | RH: {:.1} %", temp, rh);

14

 let payload = SensorData {
 timestamp: Utc::now().to_rfc3339(),
 sensor_id: "SHT20-PascaPanen-001".into(),
 location: "Kumbung Inkubasi 1".into(),
 process_stage: "Inkubasi".into(),
 temperature_celsius: temp,
 humidity_percent: rh,
 };

 let json = serde_json::to_string(&payload)?;

 match send_json_line(tcp_addr, &json).await {
 Ok(_) => println!(" Data dikirim ke TCP server"),
 Err(e) => println!(" Gagal kirim ke TCP server: {e}"),
 }
 }
 Err(e) => println!(" Gagal baca sensor: {e}"),
 }

 sleep(Duration::from_secs(2)).await;
 }
}

9. Uji TCP cepat tanpa server percobaan 3 (opsional tapi bagus untuk pembuktian): buka

terminal baru:

nc -lk 9000
10. Jalankan client:

cargo run

15

IV. PERTANYAAN PRAKTIKUM

1. Apa arti read_input_registers(1, 2) (alamat mulai dan jumlah register) dan kenapa

hasilnya harus 2 nilai?

2. Kenapa suhu dan kelembapan dibagi 10.0? Jelaskan efeknya kalau tidak dibagi.

3. Sebutkan 3 penyebab paling umum timeout/gagal baca Modbus RTU dari /dev/ttyUSB0.

4. Kenapa data TCP dikirim dengan pemisah newline \n saat server membaca dengan

lines()?

V. ANALISA & KESIMPULAN

Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah

analisa dan kesimpulan dari percobaan tersebut.

Note:

Laporan praktikum terdiri dari:

1. Dasar teori

2. Prosedur praktikum

3. Hasil percobaan praktikum

4. Hasil pertanyaan praktikum

5. Analisa

6. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib

dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan

dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan

oleh asisten Laboratorium Elektronika.

16

Praktikum 2

Smart Contract

1

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi

industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi

Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan

aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus

Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk

mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,

kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk

kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke

cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam

pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang

sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan

merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim

secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya

sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil

dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,

membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio

untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani

ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana

yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang

lebih efisien dengan tokio::spawn. Semua kelebihan ini membuat TCP server di Rust

sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

2

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan

bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang

saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan

blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3

Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain

berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh

pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,

pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak

seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3

memiliki sejumlah karakteristik penting:

7. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.

8. Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.

9. Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.

10. Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.

11. Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa

node.

12. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

InfluxDB merupakan salah satu implementasi dari database time-series yang

dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan

data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

3

pencatatan data (write performance) maupun pengambilan data (query performance),

terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang

bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-

series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi

penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi

data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),

serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan

InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi

data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan

pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis

visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa

sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,

Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada

berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan

platform ini ke data source, kemudian mengambil data melalui query yang ditentukan

pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel

pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk

memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah

diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

4

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of

Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah

terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,

mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan

memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU

berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di

udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk

transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART

biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal

diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan

oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi

elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur

komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik

instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

5

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat

(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat half-

duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan

kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat

perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver

diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair

dan pada ujung-ujung bus dipasang termination resistor 120Ω untuk mengurangi pantulan

sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle

bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan

komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),

pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT

modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal

dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung

konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring

instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal

pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,

buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan

banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial

seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga

mendukung I2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor

dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke

modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level

shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi

gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan

pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan

protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi

praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

6

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-

duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

7

II. KEBUTUHAN PRAKTIKUM

Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan

yang diperlukan adalah:

a. PC/ Laptop untuk melakukan praktikum

b. Module RS485

c. Microcontroller ESP32-S3

d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

8

III. PROSEDUR PRAKTIKUM

1. Buat folder project:

mkdir percobaan2-smartcontract
cd percobaan2-smartcontract
npm init -y
npm install --save-dev hardhat
npx hardhat

2. Pilih Create a JavaScript project.

3. Jalankan node lokal:

npx hardhat node
4. Buat file contracts/SensorStorage.sol:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract SensorStorage {
 event DataStored(
 uint256 timestamp,
 string sensorId,
 string location,
 string stage,
 int256 temperature,
 int256 humidity
);

 function storeData(
 uint256 timestamp,
 string memory sensorId,
 string memory location,
 string memory stage,
 int256 temperature,
 int256 humidity
) public {
 emit DataStored(timestamp, sensorId, location, stage, temperature,
humidity);
 }
}

5. Compile kontrak:

npx hardhat compile
6. Buat file scripts/deploy.js:

const hre = require("hardhat");

async function main() {
 const SensorStorage = await hre.ethers.getContractFactory("SensorStorage");

9

 const contract = await SensorStorage.deploy();
 await contract.waitForDeployment();
 console.log(" SensorStorage deployed to:", await contract.getAddress());
}

main().catch((e) => {
 console.error(e);
 process.exitCode = 1;
});

7. Deploy ke localhost (terminal baru):

npx hardhat run scripts/deploy.js --network localhost
8. Buat file scripts/test_store.js:

const hre = require("hardhat");

async function main() {
 const [signer] = await hre.ethers.getSigners();

 const contractAddress = "0xYOUR_CONTRACT_ADDRESS"; // ganti dari hasil
deploy

 const abi = [
 "event DataStored(uint256 timestamp,string sensorId,string location,string
stage,int256 temperature,int256 humidity)",
 "function storeData(uint256,string,string,string,int256,int256)"
];

 const c = new hre.ethers.Contract(contractAddress, abi, signer);

 const ts = Math.floor(Date.now() / 1000);
 const tx = await c.storeData(ts, "SHT20-001", "Kumbung 1", "Inkubasi", 2730,
7820); // *100
 await tx.wait();
 console.log(" storeData ok");

 const ev = await c.queryFilter(c.filters.DataStored(), 0, "latest");
 console.log("Total events:", ev.length);
 console.log("Last args:", ev[ev.length - 1].args);
}

main().catch(console.error);

9. Jalankan uji:

npx hardhat run scripts/test_store.js --network localhost

10

IV. PERTANYAAN PRAKTIKUM

1. Kenapa data dicatat lewat event bukan disimpan sebagai variabel state di contract?

2. Kenapa temperatur & humidity disimpan sebagai integer skala ×100?

3. Apa bedanya transaction dan call, dan storeData() termasuk yang mana?

4. Kenapa contractAddress harus benar, dan apa yang terjadi kalau deploy ulang?

V. ANALISA DAN KESIMPULAN

Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah

analisa dan kesimpulan dari percobaan tersebut.

Note:

Laporan praktikum terdiri dari:

1. Dasar teori

2. Prosedur praktikum

3. Hasil percobaan praktikum

4. Hasil pertanyaan praktikum

5. Analisa

6. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib

dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan

dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan

oleh asisten Laboratorium Elektronika.

11

Praktikum 3

Integrasi Blockhain

12

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi

industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi

Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan

aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus

Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk

mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,

kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk

kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke

cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam

pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang

sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan

merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim

secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya

sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil

dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,

membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio

untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani

ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana

yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang

lebih efisien dengan tokio::spawn. Semua kelebihan ini membuat TCP server di Rust

sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

13

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan

bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang

saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan

blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3

Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain

berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh

pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,

pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak

seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3

memiliki sejumlah karakteristik penting:

13. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.

14. Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.

15. Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.

16. Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.

17. Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa

node.

18. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

InfluxDB merupakan salah satu implementasi dari database time-series yang

dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan

data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

14

pencatatan data (write performance) maupun pengambilan data (query performance),

terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang

bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-

series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi

penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi

data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),

serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan

InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi

data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan

pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis

visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa

sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,

Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada

berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan

platform ini ke data source, kemudian mengambil data melalui query yang ditentukan

pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel

pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk

memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah

diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

15

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of

Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah

terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,

mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan

memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU

berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di

udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk

transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART

biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal

diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan

oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi

elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur

komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik

instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

16

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat

(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat half-

duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan

kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat

perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver

diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair

dan pada ujung-ujung bus dipasang termination resistor 120Ω untuk mengurangi pantulan

sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle

bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan

komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),

pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT

modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal

dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung

konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring

instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal

pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,

buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan

banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial

seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga

mendukung I2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor

dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke

modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level

shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi

gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan

pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan

protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi

praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

17

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-

duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

18

II. KEBUTUHAN PRAKTIKUM

Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan

yang diperlukan adalah:

a. PC/ Laptop untuk melakukan praktikum

b. Module RS485

c. Microcontroller ESP32-S3

d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

19

III. PROSEDUR PRAKTIKUM

B. PERCOBAAN

1. Pastikan InfluxDB v2 berjalan.

2. Buat ORG, BUCKET, dan TOKEN (write access).

3. Dari project Hardhat (Praktikum ke-2), ambil ABI & bytecode dari artifacts.

4. Buat folder build/ dan buat file ABI + BIN

5. Buat project:

cargo new tcp_listener_influx_chain
cd tcp_listener_influx_chain

6. Edit Cargo.toml:

[package]
name = "tcp_listener_influx_chain"
version = "0.1.0"
edition = "2021"

[dependencies]
anyhow = "1"
tokio = { version = "1", features = ["full"] }
serde = { version = "1", features = ["derive"] }
serde_json = "1"
reqwest = { version = "0.12", features = ["rustls-tls"] }
chrono = "0.4"
ethers = "2"

7. Buat file src/main.rs

use tokio::net::TcpListener;
use tokio::io::{AsyncBufReadExt, BufReader};
use serde::Deserialize;
use reqwest::Client;

use ethers::prelude::*;
use ethers::abi::Abi;
use std::{fs, sync::Arc};
use chrono::{DateTime, Utc};

#[derive(Deserialize, Debug)]
struct SensorData {
 timestamp: String,
 sensor_id: String,
 location: String,
 process_stage: String,
 temperature_celsius: f32,
 humidity_percent: f32,

20

}

#[tokio::main]
async fn main() -> anyhow::Result<()> {
 // ===== InfluxDB =====
 let influx_org = "rival team";
 let influx_bucket = "sensor_data";
 let influx_token = "PASTE_INFLUX_TOKEN";
 let influx_url = format!(
 "http://localhost:8086/api/v2/write?org={}&bucket={}&precision=s",
 urlencoding::encode(influx_org),
 urlencoding::encode(influx_bucket)
);
 let http = Client::new();

 // ===== Ethereum local =====
 // Hardhat node default: http://localhost:8545, chain_id: 31337
 let provider = Provider::<Http>::try_from("http://localhost:8545")?;
 let wallet: LocalWallet = "0xPASTE_PRIVATE_KEY"
 .parse::<LocalWallet>()?
 .with_chain_id(31337u64);
 let signer = Arc::new(SignerMiddleware::new(provider, wallet));

 // ===== Deploy contract from ABI + BIN =====
 let abi_str = fs::read_to_string("build/SensorStorage.abi")?;
 let bin_str = fs::read_to_string("build/SensorStorage.bin")?;
 let abi: Abi = serde_json::from_str(&abi_str)?;
 let bytecode = bin_str.trim().parse::<Bytes>()?;
 let factory = ContractFactory::new(abi, bytecode, signer.clone());

 let contract = factory.deploy(())?.send().await?;
 println!(" Contract deployed at: {:?}", contract.address());

 // ===== TCP server =====
 let listener = TcpListener::bind("0.0.0.0:9000").await?;
 println!(" TCP listening on 9000...");

 loop {
 let (socket, addr) = listener.accept().await?;
 println!(" Client connected: {}", addr);

 let influx_url = influx_url.clone();
 let influx_token = influx_token.to_string();
 let http = http.clone();
 let contract = contract.clone();

21

 tokio::spawn(async move {
 let reader = BufReader::new(socket);
 let mut lines = reader.lines();

 while let Ok(Some(line)) = lines.next_line().await {
 let parsed = serde_json::from_str::<SensorData>(&line);
 if parsed.is_err() {
 println!(" Invalid JSON: {}", line);
 continue;
 }
 let data = parsed.unwrap();
 println!(" Received: {:?}", data);

 // RFC3339 -> unix seconds
 let ts = DateTime::parse_from_rfc3339(&data.timestamp)
 .map(|dt| dt.timestamp())
 .unwrap_or_else(|_| Utc::now().timestamp());

 // ===== Influx write (Line Protocol) =====
 let lp = format!(
 "monitoring,sensor_id={},location={},stage={}
temperature={},humidity={} {}",
 data.sensor_id.replace(" ", "\\ "),
 data.location.replace(" ", "\\ "),
 data.process_stage.replace(" ", "\\ "),
 data.temperature_celsius,
 data.humidity_percent,
 ts
);

 let resp = http
 .post(&influx_url)
 .header("Authorization", format!("Token {}", influx_token))
 .header("Content-Type", "text/plain")
 .body(lp)
 .send()
 .await;

 match resp {
 Ok(r) if r.status().is_success() => println!(" InfluxDB: written"),
 Ok(r) => println!(" InfluxDB status: {}", r.status()),
 Err(e) => println!(" InfluxDB error: {}", e),
 }

22

 // ===== Emit event on-chain =====
 let temp_i = (data.temperature_celsius * 100.0) as i64;
 let hum_i = (data.humidity_percent * 100.0) as i64;

 let call = contract.method::<_, H256>("storeData", (
 ts as u64,
 data.sensor_id.clone(),
 data.location.clone(),
 data.process_stage.clone(),
 temp_i,
 hum_i,
));

 match call {
 Ok(m) => match m.send().await {
 Ok(p) => println!(" Ethereum tx sent: {:?}", p),
 Err(e) => println!(" Ethereum tx error: {:?}", e),
 },
 Err(e) => println!(" Contract call build error: {:?}", e),
 }
 }
 });
 }
}

8. Jalankan listener:

cargo run
9. Jalankan Modbus client

10. Buat folder frontend/ dan file index.html:

<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Sensor Event Monitor</title>
 <script
src="https://cdn.jsdelivr.net/npm/ethers@6/dist/ethers.umd.min.js"></script
>
 <script
src="https://cdn.jsdelivr.net/npm/chart.js@4/dist/chart.umd.min.js"></script
>
 <link rel="stylesheet" href="style.css" />
</head>
<body>
 <h1>Monitoring Sensor (Blockchain Events)</h1>
 <button onclick="loadSensorData()">Load Data</button>

23

 <canvas id="chart" height="90"></canvas>

 <table id="sensorTable">
 <thead>
 <tr>
 <th>Time</th><th>Sensor
ID</th><th>Location</th><th>Stage</th><th>Temp</th><th>RH</th>
 </tr>
 </thead>
 <tbody></tbody>
 </table>

 <script src="script.js"></script>
</body>
</html>

11. Buat style.css:

body { font-family: sans-serif; margin: 20px; background: #f9f9f9; }
table { width: 100%; border-collapse: collapse; margin-top: 14px; background:
#fff; }
th, td { border: 1px solid #ddd; padding: 8px; text-align: center; }
button { padding: 10px 14px; cursor: pointer; }

12. Buat script.js (ganti contractAddress sesuai alamat kontrak yang tercetak dari listener

Rust):

const contractAddress = "0xYOUR_CONTRACT_ADDRESS";
const abi = [
 "event DataStored(uint256 timestamp,string sensorId,string location,string
stage,int256 temperature,int256 humidity)"
];

let chart;

async function loadSensorData() {
 const provider = new ethers.BrowserProvider(window.ethereum);
 await provider.send("eth_requestAccounts", []);
 const signer = await provider.getSigner();
 const contract = new ethers.Contract(contractAddress, abi, signer);

 const events = await contract.queryFilter(contract.filters.DataStored(), 0,
"latest");

 const tbody = document.querySelector("#sensorTable tbody");
 tbody.innerHTML = "";

24

 const labels = [];
 const temps = [];
 const hums = [];

 for (const e of events) {
 const d = e.args;
 const timeStr = new Date(Number(d.timestamp) * 1000).toLocaleString();
 const temp = Number(d.temperature) / 100;
 const hum = Number(d.humidity) / 100;

 tbody.innerHTML += `
 <tr>
 <td>${timeStr}</td>
 <td>${d.sensorId}</td>
 <td>${d.location}</td>
 <td>${d.stage}</td>
 <td>${temp.toFixed(2)}</td>
 <td>${hum.toFixed(2)}</td>
 </tr>
 `;

 labels.push(timeStr);
 temps.push(temp);
 hums.push(hum);
 }

 renderChart(labels, temps, hums);
}

function renderChart(labels, temps, hums) {
 const ctx = document.getElementById("chart").getContext("2d");
 if (chart) chart.destroy();

 chart = new Chart(ctx, {
 type: "line",
 data: {
 labels,
 datasets: [
 { label: "Temperature (°C)", data: temps },
 { label: "Humidity (%)", data: hums }
]
 },
 options: { responsive: true }
 });
}

13. Jalankan web dengan Live Server / npx serve, lalu buka browser dan klik Load Data.

25

IV. PERTANYAAN PRAKTIKUM

1. Jelaskan alur data end-to-end dari pengiriman JSON sampai tampil di web (urut 4–6

langkah).

2. Dalam InfluxDB Line Protocol, mana yang jadi tag dan mana yang jadi field untuk

sensor_id, location, temperature, humidity?

3. Kalau InfluxDB sukses tapi transaksi blockchain gagal, apa dampaknya ke data dan

gimana cara meminimalkan masalah itu?

4. Kenapa queryFilter(0, "latest") bisa jadi masalah kalau data makin banyak, dan

apa solusi sederhananya?

V. ANALISA & KESIMPULAN

Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah

analisa dan kesimpulan dari percobaan tersebut.

Note:

Laporan praktikum terdiri dari:

7. Dasar teori

8. Prosedur praktikum

9. Hasil percobaan praktikum

10. Hasil pertanyaan praktikum

11. Analisa

12. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib

dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan

dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan

oleh asisten Laboratorium Elektronika.

