ADVANCING
HUMANITY

TS

V1231418

INTERKONEKSI SISTEM
INSTRUMENTASI

- . Departemen Teknik Instrumentasi
_/ Fakultas Vokasi
[Institut Teknologi Sepuluh Nopember
2025

Disusun oleh:

Laboratorium Elektronika

Teknik Instrumentasi

Institut Teknologi Sepuluh Nopember
2025

ADVANCING [
HUMANITY :}@;\j:
R

DAFTAR ISI
TIM PENYUSUN MODUL PRAKTIKUMccuiiisuinsninsanissnccssncssnecssnssssesssessssscssassssssssasees 2
TUJUAN UMUM PRAKTIKUM....cioiireecsrenssnecsannssnesssnssssecsanssssssssesssssssssssssssssassssasssssssssssss 3
Praktikum 1 ESP32-S3 ModBus RTUiiiiniinninniinneensnenseesssecsnssssessecsssesssnsssassssacens 4
L DASAR TEORI ...ttt ettt ettt e st sbeesaeeens 5
I[I. KEBUTUHAN PRAKTIKUMcooiiiiiiiiiiiiiieeiteetee ettt 11
I1I. PROSEDUR PRAKTIKUMciiiiiiiiiiiiiieeniteeete ettt s 12
IV. PERTANYAAN PRAKTIKUM ..ottt 15
V. ANALISA & KESIMPULANcooiiiiiitieneeetee ettt 15
Praktikum 2 Smart CONracCt.......cceeeiicsieiieicssnicssnecssnicsssnessssnesssssesssssesssssessssssssssssssssssssns 16
L DASAR TEORI ...ttt ettt e s 1
II. KEBUTUHAN PRAKTIKUM ...ttt sttt 7
[II. PROSEDUR PRAKTIKUMcoiiiiiiiitiiitiiiieeeiie ettt ettt es 8
IV. PERTANYAAN PRAKTIKUMcociiiiiiiiiiiiiieeteeteeeeeeeee et 10
V. ANALISA DAN KESIMPULAN:cooitttitteite ettt ettt 10
Praktikum 3 Integrasi BIOCKRAINueiiiiivuniiiciisniicnissnniicsssnniessssnnnscsssnssessssssssesssssssssssnans 11
L DASAR TEORI ..ottt ettt et 12
II. KEBUTUHAN PRAKTIKUM ..ottt 18
I1I. PROSEDUR PRAKTIKUM ...ttt 19
IV. PERTANYAAN PRAKTIKUM ..ottt 25
V. ANALISA & KESIMPULAN ..ottt ettt 25

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

TIM PENYUSUN MODUL PRAKTIKUM

Program Studi : Teknologi Rekayasa Instrumentasi
Departemen : Teknik Instrumentasi
Fakultas : Vokasi
Institusi : Institut Teknologi Sepuluh Nopember
Semester 14
Mata Kuliah : Interkoneksi Sistem Instrumentasi
Kode Matkul : VI231418
Tahun Ajaran : 2025/2026
DOSEN PENGAMPU
No Nama NIP/NIDN Peran
1 | Ahmad Radhy, S.Si., M.Si 0013118906 Dosen Pengampu
2 ISrT[,)Vg/}TO ktavianto SUEEHEENHETE 0008108306 Dosen Pengampu
3 | Muhammad Roy Ashiddiqi, S.T., M.T. | 199301312024061001 | Dosen Pengampu
TIM PENYUSUN
No Nama NRP Peran
1 | Faradilla Damayanti 2042221004 Penyusun
2 | Muhammad Mishbahul Huda 2042221008 Penyusun
3 | Reza Akbar Azary 2042221033 Penyusun
4 | Mukhamad Da'ul Azimi 2042221071 Penyusun
5 | Nabilla Nurul Pratiwi 2042221083 Penyusun
6 | Muhammad Ivan Hermawan 2042221096 Penyusun
7 | M Dwi Aswangga Azhari 2042221103 Penyusun
8 | Akbar Pria Agung Sukarno 2042221105 Penyusun
9 | Alif Devintia Pratiwi Hariyanti 2042221139 Penyusun
10 | Galuh Pandu Satrio 2042231019 Penyusun
11 | Akhmad Maulvin Nazir Zakaria 2042231028 Penyusun
12 | Ahmad Malikul Karim Amrullah 2042231041 Penyusun
13 | Lusty Hanna Isyajidah 2042231045 Penyusun
14 | Wildan Rizki Auzay 2042231061 Penyusun
15 | Naufal Faqiih Ashshiddiq 2042231068 Penyusun

MODUL PRAKTIKUM

ADVANCING [l Cm@ fh “

HUMANITY &\

TUJUAN UMUM PRAKTIKUM
Mata kuliah Interkonesi Sistem Instrumentasi berada di semester 4 dengan bobot 3 SKS
yang terdiri dari 2 SKS TEORI dan 1 SKS PRAKTIKUM, dimana mata kuliah ini mempunyai
tujuan pembelajaran (CPL MK):
CAPAIAN PEMBELAJARAN MATA KULIAH (CP-MK)
BERDASARKAN KEGIATAN PRAKTIKUM

Mahasiswa mampu memahami prinsip komunikasi data instrumentasi menggunakar

1 Modbus RTU.

Mahasiswa mampu melakukan akuisisi data sensor melalui pembacaan register Modbu
2 dan mengonversi data mentah menjadi satuan fisik.

Mahasiswa mampu membentuk dan menstandarkan format data menggunakan struktur datg
3 dan JSON untuk pertukaran data antarsistem.

Mahasiswa mampu mengirim data hasil akuisisi ke sistem lain melalui komunikasi jaringar
. TCP.

Mahasiswa mampu membangun TCP listener untuk menerima data, melakukan parsing
5

serta menangani kesalahan komunikasi/format data.

6 | Mahasiswa mampu menyimpan data sensor ke database time-series InfluxDB.

Mahasiswa mampu memahami konsep dasar smart contract dan menerapkan

pencatatan data melalui event pada jaringan Ethereum lokal.

Mahasiswa mampu mengintegrasikan sistem end-to-end dan melakukan validasi

8

hasil melalui antarmuka web/Web3.

Untuk menunjang tercapainya CPL MK interkoneksi sistem instrumentasi, maka MODUL
praktikum Interkoneksi Sistem Instrumentasi, disusun untuk dapat memberikan pemahaman
kepada mahasiswa tentang cara kerja Web3, Smartcontract, serta Blockchain. Pelaksanaan
praktikum ini umumnya memerlukan beberapa komponen utama seperti Laptop, Sensor, dan
module RS485.

Untuk dapat mengukur tingkat pemahaman mahasiswa, pada praktikum ini dilengkapi
dengan pertanyaan terkait dengan:

- Dasar teori penunjang praktikum

- Gambar ilustrasi rangkaian

- Tahapan dan metodologi percobaan

Proses evaluasi praktikum dilakukan melalui laporan praktikum dalam bentuk soft file

yang berisi hasil percobaan dan jawaban terhadap pertanyaan dalam modul praktikum.

MODUL PRAKTIKUM

Praktikum 1

ESP32-S3 ModBus RTU

ADVANCING ;b TS Cm@ fh ,([,

HUMANITY \§;

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi
industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi
Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan
aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus
Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk
mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,
kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk
kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke
cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam
pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang
sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan
merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim
secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya
sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil
dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,
membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio
untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani
ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana
yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang
lebih efisien dengan fokio.:spawn. Semua kelebihan ini membuat TCP server di Rust
sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan
bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang
saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan
blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3

Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain
berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh
pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,
pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak
seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3
memiliki sejumlah karakteristik penting:

1. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.

Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.
Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.

Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.

A

Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa
node.
6. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

&) influxdb

InfluxDB merupakan salah satu implementasi dari database time-series yang
dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan
data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

pencatatan data (write performance) maupun pengambilan data (query performance),
terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang
bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-
series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi
penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi
data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),
serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan
InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

f,-'\\ Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi
data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan
pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis
visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa
sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,
Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada
berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan
platform ini ke data source, kemudian mengambil data melalui query yang ditentukan
pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel
pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk
memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah
diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

MODUL PRAKTIKUM

ADVANCING [
HUMANITY :}@;\j:
R

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of
Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah
terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,
mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

-
= I I I I I I I I I " indicator light (low
= I‘I‘I‘T power consumption)
- »
- -
- [
- [
™ ~

= L
Built-in sensor - = I
_ L
= _—
a [l
3 =
a =
- - Hollow-out

heat dissipation

———
DemguTmb_le :

plug-in termina oo~ —

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan
memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU
berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di
udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk
transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART
biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal
diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan
oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi
elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur
komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik
instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

MODUL PRAKTIKUM

ADVANCING o
HUMANITY 3\\‘%{_\;

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat
(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat haltf-
duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan
kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat
perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver
diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair
dan pada ujung-ujung bus dipasang termination resistor 120Q untuk mengurangi pantulan
sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle
bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan
komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),
pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT
modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal
dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung
konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring
instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal
pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,
buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan
banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial
seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga
mendukung [2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor
dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke
modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level
shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi
gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan
pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan
protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi
praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

MODUL PRAKTIKUM

ADVANCING [
HUMANITY @)

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-
duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

MODUL PRAKTIKUM

ADVANCING [
HUMANITY (G

II. KEBUTUHAN PRAKTIKUM
Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan
yang diperlukan adalah:
a. PC/ Laptop untuk melakukan praktikum
b. Module RS485
c. Microcontroller ESP32-S3
d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

MODUL PRAKTIKUM

e ADVANCING k
V'r/ HUMANITY @ s 7 ,

s —

III. PROSEDUR PRAKTIKUM
A. PERCOBAAN
1. Siapkan perangkat: Sensor SHT20 RS485, USB-to-RS485 converter, dan PC/Laptop.
2. Hubungkan kabel RS485: A(+) ke A, B(—) ke B, dan pastikan sensor mendapat supply
sesuai modul.
3. Colok USB-to-RS485 ke PC.

4. Buka terminal dan cek port serial terdeteksi:

ls /dev/ttyUSB*

5. Jika tidak bisa akses port (permission), jalankan:

sudo usermod -aG dialout $USER

logout/login setelah ini
6. Buat project Rust baru:

cargo new modbus_client_tcp
cd modbus_client_tcp
7. Edit Cargo.toml, isi dependency berikut:

[package]

name = "modbus_client_tcp"
version ="0.1.0"

edition ="2021"

[dependencies]
anyhow ="1"
tokio ={version="1", features = ["full"] }
tokio-modbus ="0.13"
tokio-serial ="5"
serde ={version="1", features =["derive"] }
serde_json="1"
chrono="0.4"
8. Buka src/main.ts, lalu tempel kode ini (baca 2 input register mulai alamat 1, konversi

/10, kirim JSON ke TCP):

use tokio_modbus::{client::rtu, prelude::*};

use tokio_serial::{SerialPortBuilderExt, Parity, StopBits, DataBits};
use tokio::net::TcpStream;

use tokio::io::AsyncWriteExt;

use serde::Serialize;

use chrono::Utc;

use anyhow::{Result, bail};

use tokio::time::{sleep, Duration};

#[derive(Serialize)]
struct SensorData {

MODUL PRAKTIKUM

ADVANCING #
HUMANITY ’TS g@ o
s — 4

timestamp: String,
sensor_id: String,
location: String,
process_stage: String,
temperature_celsius: f32,
humidity_percent: f32,

}

async fn read_sht20(port_path: &str, slave_id: u8) -> Result<(f32, f32)> {
let builder = tokio_serial::new(port_path, 9600)
.parity(Parity::None)
.stop_bits(StopBits::One)
.data_bits(DataBits::Eight)
timeout(std::time::Duration::from_secs(1));

let port = builder.open_native_async()?;
let mut ctx = rtu::connect_slave(port, Slave(slave_id)).await?;

// Input registers addr=1 qty=2 (sesuai spec kamu)
let resp = ctx.read_input_registers(1, 2).await?;
ifresp.len() =2

bail!("Response length != 2, got {:?}", resp);
}

lettemp =resp[0] as f32/10.0;
letrh =resp[1]asf32/10.0;
Ok((temp, rh))

}

async fn send_json_line(tcp_addr: &str, json_line: &str) -> Result<()> {
let mut stream = TcpStream::connect(tcp_addr).await?;
stream.write_all(json_line.as_bytes()).await?;
stream.write_all(b"\n").await?;
Ok(())

}

#[tokio::main]
async fn main() -> Result<()>{
let serial_port ="/dev/ttyUSB0"; // hasil langkah 4
let slave_id = 1u8;
lettcp_addr="127.0.0.1:9000"; // server di percobaan 3

loop {
match read_sht20(serial_port, slave_id).await {
Ok((temp, rh)) =>{
printin!(" # Temp:{:.1}°C | RH: {:.1} %", temp, rh);

MODUL PRAKTIKUM

ADVANCING h
HUMANITY ms 6@ 7 ’

s —

let payload = SensorData {
timestamp: Utc::now().to_rfc3339(),
sensor_id: "SHT20-PascaPanen-001".into(),
location: "Kumbung Inkubasi 1".into(),
process_stage: "Inkubasi".into(),
temperature_celsius: temp,
humidity_percent: rh,

b

let json = serde_json::to_string(&payload)?;

match send_json_line(tcp_addr, &json).await {
Ok(_) => println!(" @ Data dikirim ke TCP server"),
Err(e) => println!(" 2 Gagal kirim ke TCP server: {e}"),

}
}

Err(e) => println!(" Gagal baca sensor: {e}"),

}

sleep(Duration::from_secs(2)).await;
}

}
9. Uji TCP cepat tanpa server percobaan 3 (opsional tapi bagus untuk pembuktian): buka

terminal baru:

nc -tk 9000

10. Jalankan client:

cargo run

MODUL PRAKTIKUM

ADVANCING [
HUMANITY FE8
Y

IV.PERTANYAAN PRAKTIKUM
1. Apa arti read input registers(1, 2) (alamat mulai dan jumlah register) dan kenapa
hasilnya harus 2 nilai?
2. Kenapa suhu dan kelembapan dibagi 10.0? Jelaskan efeknya kalau tidak dibagi.
3. Sebutkan 3 penyebab paling umum timeout/gagal baca Modbus RTU dari /dev/ttyUSBO.
4. Kenapa data TCP dikirim dengan pemisah newline \n saat server membaca dengan

lines()?

V. ANALISA & KESIMPULAN
Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah
analisa dan kesimpulan dari percobaan tersebut.
Note:

Laporan praktikum terdiri dari:

1. Dasar teori

2. Prosedur praktikum

3. Hasil percobaan praktikum
4. Hasil pertanyaan praktikum
5. Analisa

6. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib
dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan
dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan
oleh asisten Laboratorium Elektronika.

MODUL PRAKTIKUM

Praktikum 2

Smart Contract

MODUL PRAKTIKUM

16

ADVANCING ;b TS Cm@ fh ,([,

HUMANITY \§;

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi
industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi
Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan
aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus
Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk
mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,
kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk
kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke
cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam
pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang
sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan
merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim
secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya
sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil
dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,
membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio
untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani
ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana
yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang
lebih efisien dengan fokio.:spawn. Semua kelebihan ini membuat TCP server di Rust
sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan
bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang
saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan
blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3
Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain
berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh
pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,
pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak
seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3
memiliki sejumlah karakteristik penting:
7. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.
8. Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.
9. Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.
10. Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.
11. Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa
node.
12. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

&) influxdb

InfluxDB merupakan salah satu implementasi dari database time-series yang
dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan
data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

pencatatan data (write performance) maupun pengambilan data (query performance),
terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang
bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-
series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi
penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi
data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),
serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan
InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

f,-'\\ Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi
data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan
pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis
visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa
sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,
Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada
berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan
platform ini ke data source, kemudian mengambil data melalui query yang ditentukan
pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel
pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk
memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah
diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

MODUL PRAKTIKUM

ADVANCING [
HUMANITY :}@;\j:
R

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of
Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah
terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,
mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

-
= I I I I I I I I I " indicator light (low
= I‘I‘I‘T power consumption)
- »
- -
- [
- [
™ ~

= L
Built-in sensor - = I
_ L
= _—
a [l
3 =
a =
- - Hollow-out

heat dissipation

———
DemguTmb_le :

plug-in termina oo~ —

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan
memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU
berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di
udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk
transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART
biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal
diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan
oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi
elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur
komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik
instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

MODUL PRAKTIKUM

ADVANCING o
HUMANITY 3\\‘%{_\;

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat
(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat haltf-
duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan
kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat
perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver
diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair
dan pada ujung-ujung bus dipasang termination resistor 120Q untuk mengurangi pantulan
sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle
bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan
komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),
pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT
modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal
dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung
konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring
instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal
pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,
buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan
banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial
seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga
mendukung [2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor
dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke
modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level
shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi
gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan
pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan
protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi
praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

MODUL PRAKTIKUM

o] IR C ol A

ims

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-
duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

MODUL PRAKTIKUM

ADVANCING [
HUMANITY (G

II. KEBUTUHAN PRAKTIKUM
Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan
yang diperlukan adalah:
a. PC/ Laptop untuk melakukan praktikum
b. Module RS485
c. Microcontroller ESP32-S3
d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

MODUL PRAKTIKUM

ADVANCING k
HUMANITY ms €@ / >
s . 4

II1. PROSEDUR PRAKTIKUM
1. Buat folder project:

mkdir percobaan2-smartcontract
cd percobaan2-smartcontract
npm init -y
npm install --save-dev hardhat
npx hardhat

2. Pilih Create a JavaScript project.

3. Jalankan node lokal:

npx hardhat node

4. Buat file contracts/SensorStorage.sol:

// SPDX-License-ldentifier: MIT
pragma solidity *0.8.0;

contract SensorStorage {

event DataStored(
uint256 timestamp,
string sensorld,
string location,
string stage,
int256 temperature,
int256 humidity

);

function storeData(
uint256 timestamp,
string memory sensorld,
string memory location,
string memory stage,
int256 temperature,
int256 humidity

) public {
emit DataStored(timestamp, sensorld, location, stage, temperature,

humidity);
}

}
5. Compile kontrak:

npx hardhat compile
6. Buat file scripts/deploy.js:

const hre = require("hardhat");

async function main() {
const SensorStorage = await hre.ethers.getContractFactory("SensorStorage");

MODUL PRAKTIKUM

ADVANCING h
HUMANITY ms 6{) =
s — -

const contract = await SensorStorage.deploy();
await contract.waitForDeployment();

console.log(" ® SensorStorage deployed to:", await contract.getAddress());

}

main().catch((e) =>{
console.error(e);
process.exitCode = 1;

});
Deploy ke localhost (terminal baru):

npx hardhat run scripts/deploy.js --network localhost
8. Buat file scripts/test_store.js:

const hre =require("hardhat");

async function main() {
const [signer] = await hre.ethers.getSigners();

const contractAddress = "OXYOUR_CONTRACT_ADDRESS"; // ganti dari hasil
deploy

constabi=|[
"event DataStored(uint256 timestamp,string sensorld,string location,string
stage,int256 temperature,int256 humidity)",
"function storeData(uint256,string,string,string,int256,int256)"

1;
const ¢ = new hre.ethers.Contract(contractAddress, abi, signer);

const ts = Math.floor(Date.now() / 1000);

const tx = await c.storeData(ts, "SHT20-001", "Kumbung 1", "Inkubasi", 2730,
7820); // *100

await tx.wait();

console.log(" ® storeData ok");

const ev = await c.queryFilter(c.filters.DataStored(), 0, "latest");
console.log("Total events:", ev.length);
console.log("Last args:", ev[ev.length - 1].args);

}

main().catch(console.error);
9. Jalankan uji:

npx hardhat run scripts/test_store.js --network localhost

MODUL PRAKTIKUM

ADVANCING [
HUMANITY FE8
Y

IV. PERTANYAAN PRAKTIKUM

Kenapa data dicatat lewat event bukan disimpan sebagai variabel state di contract?
Kenapa temperatur & humidity disimpan sebagai integer skala x100?

Apa bedanya transaction dan call, dan storebata () termasuk yang mana?
Kenapa contractaAddress harus benar, dan apa yang terjadi kalau deploy ulang?

1.
2.
3.
4.

V. ANALISA DAN KESIMPULAN
Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah
analisa dan kesimpulan dari percobaan tersebut.
Note:

Laporan praktikum terdiri dari:
1. Dasar teori

2. Prosedur praktikum

3. Hasil percobaan praktikum
4. Hasil pertanyaan praktikum
5. Analisa

6. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib
dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan
dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan
oleh asisten Laboratorium Elektronika.

MODUL PRAKTIKUM

Praktikum 3

Integrasi Blockhain

11

MODUL PRAKTIKUM

ADVANCING ;b TS Cm@ fh ,([,

HUMANITY \§;

I. DASAR TEORI

1.1 ModBus Client

Modbus merupakan protokol komunikasi yang banyak digunakan dalam sistem otomasi
industri untuk pertukaran data antara perangkat seperti PLC, sensor, dan aktuator. Dalam versi
Modbus TCP, istilah Modbus Client mengacu pada perangkat atau program yang berperan
aktif dalam memulai komunikasi, seperti membaca data dari atau menulis data ke Modbus
Server.

Dalam hal ini, bahasa pemrograman Rust menjadi pilihan yang menarik untuk
mengembangkan Modbus Client karena memiliki keunggulan dalam hal keamanan memori,
kecepatan eksekusi, dan efisiensi dalam pengelolaan proses secara bersamaan (asinkron).

Pengembang dapat membangun aplikasi Modbus Client yang andal dan efisien untuk
kebutuhan industri, seperti sistem pemantauan jarak jauh, pengiriman data dari perangkat ke
cloud, atau integrasi antar perangkat di lingkungan industri. Penggunaan Rust dalam
pengembangan Modbus Client memberikan jaminan kestabilan dan kinerja tinggi, yang
sangat penting dalam sistem industri yang menuntut kecepatan dan keandalan komunikasi

data secara real-time.

1.2 TCP Server

TCP Server dalam pemrograman Rust adalah program yang bertugas menerima dan
merespons koneksi dari client menggunakan protokol TCP, yang menjamin data dikirim
secara utuh dan berurutan. Rust sangat cocok untuk membuat TCP server karena punya
sistem manajemen memori yang aman tanpa garbage collector, sehingga server lebih stabil
dan bebas dari bug seperti crash atau data race. Selain itu, Rust terkenal efisien dan cepat,
membuatnya mampu menangani banyak koneksi sekaligus tanpa membuat sistem lambat.

Dengan bantuan pustaka seperti std::net untuk versi sederhana (sinkron) atau tokio
untuk versi asinkron (non-blocking), kita bisa membangun server yang bisa melayani
ribuan client secara bersamaan. Sebagai contoh, kita bisa membuat TCP server sederhana
yang membaca pesan dari client dan membalasnya, atau membangun versi asinkron yang
lebih efisien dengan fokio::spawn. Semua kelebihan ini membuat TCP server di Rust
sangat ideal digunakan dalam aplikasi nyata seperti sistem monitoring, kendali jarak jauh,

atau layanan berbasis jaringan lainnya.

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

1.3 Blockchain

Blockchain adalah buku besar digital yang terdistribusi (distributed ledger) dan
bekerja secara peer-to-peer. Teknologi ini menyimpan catatan transaksi dalam blok yang
saling terhubung dan diberi penanda waktu. Setiap blok terenkripsi dan terhubung dengan
blok sebelumnya melalui kriptografi, sehingga menciptakan rantai data yang tidak dapat

diubah (immutable) dan transparan tanpa otoritas pusat (Alam, 2023).

1.4 Web3
Web3 atau Web 3.0 merupakan generasi baru dari layanan internet yang didesain
berbasis teknologi blockchain, dengan prinsip utama desentralisasi, kepemilikan data oleh
pengguna, serta penghapusan ketergantungan pada pihak ketiga terpercaya. Dalam Web3,
pengguna memiliki kendali penuh terhadap identitas digital, aset, dan data mereka, tidak
seperti pada Web2 yang dikelola oleh platform terpusat (Wang et al., 2022). Web3
memiliki sejumlah karakteristik penting:
13. Terbuka: Data disimpan di jaringan publik dan dapat diakses siapa saja.
14. Trustless: Interaksi antar pengguna tidak membutuhkan kepercayaan atau perantara.
15. Permissionless: Tidak diperlukan izin untuk mengakses atau menggunakan layanan.
16. Anonim: Identitas pengguna dapat disamarkan melalui pseudonim.
17. Ketersediaan tinggi: Layanan tetap berjalan meskipun terjadi gangguan pada beberapa
node.
18. Interoperabilitas: Dapat digunakan di berbagai platform blockchain seperti Ethereum,

Solana, atau Binance Smart Chain.

1.5 InfluxDB

&) influxdb

InfluxDB merupakan salah satu implementasi dari database time-series yang
dikembangkan secara khusus untuk memenuhi kebutuhan penyimpanan dan pengolahan
data berdasarkan waktu. InfluxDB didesain dengan arsitektur yang mampu menangani

data dalam jumlah besar secara efisien dan memberikan performa tinggi, baik dalam hal

MODUL PRAKTIKUM

ADVANCING 2
HUMANITY (G

pencatatan data (write performance) maupun pengambilan data (query performance),
terutama pada skala waktu yang sangat detail (misalnya per detik atau bahkan milidetik).

Berbeda dengan sistem basis data relasional seperti MySQL atau PostgreSQL yang
bersifat umum, InfluxDB dioptimalkan untuk skenario penggunaan yang bersifat time-
series. Hal ini menjadikannya unggul dalam beberapa aspek penting, seperti efisiensi
penyimpanan data yang tinggi, kemampuan melakukan query berbasis waktu, agregasi
data berdasarkan rentang waktu tertentu, pengaturan masa simpan data (data retention),
serta pengolahan dan visualisasi data secara real-time. Keunggulan ini menjadikan
InfluxDB sebagai salah satu pilihan utama dalam membangun sistem monitoring dan

analisis data waktu secara modern.

1.6 Grafana

f,-'\\ Grafana

Grafana merupakan sebuah platfrom open-source yang digunakan untuk visualisasi
data, pemantauan sistem, dan analisis data secara real-time. Platform ini memungkinkan
pengguna untuk membuat dashboard interaktif yang menampilkan berbagai jenis
visualisasi seperti grafik, tabel, dan gauge, sehingga memudahkan pemantauan performa
sistem atau aplikasi secara langsung.

Grafana mendukung koneksi ke berbagai sumber data (data source) seperti InfluxDB,
Prometheus, MySQL, PostgreSQL, dan Elasticsearch, sehingga fleksibel digunakan pada
berbagai jenis aplikasi dan bidang. Sistem kerja Grafana dimulai dengan menghubungkan
platform ini ke data source, kemudian mengambil data melalui query yang ditentukan
pengguna. Data yang diperoleh selanjutnya divisualisasikan dalam bentuk panel-panel
pada dashboard, yang dapat dikustomisasi sesuai kebutuhan.

Selain visualisasi, Grafana juga menyediakan fitur notifikasi dan alerting untuk
memberikan peringatan otomatis jika terjadi kondisi abnormal sesuai aturan yang telah
diatur pengguna. Kelebihan Grafana terletak pada sifatnya yang open-source, antarmuka

yang user-friendly berbasis web, serta dukungan luas terhadap plugin dan data source,

MODUL PRAKTIKUM

ADVANCING [
HUMANITY :}@;\j:
R

sehingga menjadikannya pilihan populer dalam pemantauan infrastruktur TI, Internet of
Things (IoT), sistem manufaktur, dan berbagai aplikasi lainnya. Penggunaan Grafana telah
terbukti efektif dalam memonitor performa server, menganalisis data sensor IoT,
mengawasi sistem industri, serta melakukan analisis data time-series secara efisien dan

real-time.

1.7 SHT20 Temperature & Humidity Sensor

-
= I I I I I I I I I " indicator light (low
= I‘I‘I‘T power consumption)
- »
- -
- [
- [
™ ~

= L
Built-in sensor - = I
_ L
= _—
a [l
3 =
a =
- - Hollow-out

heat dissipation

———
DemguTmb_le :

plug-in termina oo~ —

Sensor modbus SHT 20 merupakan sensor temperature dan kelembapan dengan
memiliki presisi yang tinggi. Sensor ini menggunakan protocol komunikasi Modbus RTU
berbasis RS485. SHT 20 memiliki karakteristik resistif terhadap perubahan kadar air di
udara serta terdapat chip yang bisa mengkonversi analog ke digital dengan menggunakan

bidirectional (kabel tunggal dua arah).

1.8 RS485 Module

RS485 (TIA/EIA-485) adalah standar komunikasi serial yang dirancang untuk
transmisi data jarak jauh dan lingkungan industri yang bising. Berbeda dengan UART
biasa yang bersifat single-ended (mengacu ke ground), RS485 menggunakan sinyal
diferensial pada dua jalur utama (umumnya diberi label A dan B). Data direpresentasikan
oleh selisih tegangan antara A dan B, sehingga lebih tahan terhadap interferensi
elektromagnetik (noise) dan drop tegangan pada kabel panjang.

RS485 umumnya digunakan pada topologi bus multipoint, artinya satu jalur
komunikasi dapat dipakai oleh banyak perangkat sekaligus (multi-drop). Dalam praktik
instrumentasi, RS485 sering dipasangkan dengan protokol seperti Modbus RTU, di mana

MODUL PRAKTIKUM

ADVANCING o
HUMANITY 3\\‘%{_\;

satu perangkat bertindak sebagai master dan perangkat lain sebagai slave dengan alamat
(ID) masing-masing. Karena satu bus dipakai bersama, komunikasi biasanya bersifat haltf-
duplex (pengiriman dan penerimaan bergantian), sehingga modul RS485 membutuhkan
kontrol arah data melalui pin seperti DE (Driver Enable) dan /RE (Receiver Enable). Saat
perangkat mengirim data, DE diaktifkan; saat menerima, DE dimatikan dan receiver
diaktifkan.

Untuk menjaga kualitas sinyal, jaringan RS485 idealnya memakai kabel twisted pair
dan pada ujung-ujung bus dipasang termination resistor 120Q untuk mengurangi pantulan
sinyal. Beberapa modul RS485 juga menyediakan fitur fail-safe biasing agar kondisi idle
bus stabil. Dalam implementasi, hal yang paling sering menyebabkan kegagalan
komunikasi RS485 adalah pembalikan A/B, ground tidak common (pada sistem tertentu),
pengaturan baud/parity yang tidak sama, serta kontrol DE/RE yang salah timing.

1.9 ESP32-S3 Microcontroller

ESP32-S3 adalah mikrokontroler dari Espressif yang ditujukan untuk aplikasi IoT
modern karena menggabungkan kemampuan komputasi, konektivitas, dan fitur periferal
dalam satu chip. ESP32-S3 memiliki prosesor Xtensa LX7 dual-core dan mendukung
konektivitas Wi-Fi 2.4 GHz serta Bluetooth LE, sehingga cocok untuk sistem monitoring
instrumentasi berbasis jaringan. Dengan dukungan RAM internal dan opsi flash eksternal
pada modul, ESP32-S3 mampu menjalankan aplikasi yang membutuhkan komunikasi,
buffering data, dan pemrosesan data sensor secara real-time.

Dalam konteks interkoneksi instrumentasi, ESP32-S3 penting karena menyediakan
banyak antarmuka periferal, terutama UART yang digunakan untuk komunikasi serial
seperti Modbus RTU melalui transceiver RS485. Selain UART, ESP32-S3 juga
mendukung [2C, SPI, ADC, PWM, dan GPIO yang memudahkan integrasi berbagai sensor
dan aktuator. ESP32-S3 bekerja pada level logika 3.3V, sehingga saat dihubungkan ke
modul RS485 perlu memastikan transceiver kompatibel 3.3V atau menggunakan level
shifting bila diperlukan.

Keunggulan ESP32-S3 pada sistem instrumentasi adalah kemampuannya menjadi
gateway: membaca data sensor dari lapangan (mis. lewat RS485/Modbus), melakukan
pemrosesan dasar (filtering, scaling, validasi), lalu mengirim data ke server menggunakan
protokol jaringan seperti TCP/HTTP/MQTT melalui Wi-Fi. Dalam implementasi
praktikum, perhatian utama pada ESP32-S3 biasanya mencakup pemilihan pin UART

MODUL PRAKTIKUM

ADVANCING [
HUMANITY @)

yang benar, kestabilan catu daya, manajemen timing komunikasi (khususnya saat half-
duplex RS485), serta pengemasan data (mis. JSON) agar dapat diproses sistem lain secara

konsisten.

MODUL PRAKTIKUM

ADVANCING [
HUMANITY (G

II. KEBUTUHAN PRAKTIKUM
Praktikum Interkoneksi Sistem Instrumentasi dilakukan secara offline, sehingga peralatan
yang diperlukan adalah:
a. PC/ Laptop untuk melakukan praktikum
b. Module RS485
c. Microcontroller ESP32-S3
d. Sensor SHT20

e. Modul Praktikum Interkoneksi Sistem Instrumentasi

MODUL PRAKTIKUM

ADVANCING k
HUMANITY s €@ / ,

s —

III. PROSEDUR PRAKTIKUM
B. PERCOBAAN
1. Pastikan InfluxDB v2 berjalan.
Buat ORG, BUCKET, dan TOKEN (write access).
Dari project Hardhat (Praktikum ke-2), ambil ABI & bytecode dari artifacts.
Buat folder build/ dan buat file ABI + BIN

SAE S

Buat project:

cargo new tcp_Llistener_influx_chain

cd tcp_Llistener_influx_chain
6. Edit Cargo.toml:

[package]

name = "tcp_listener_influx_chain"
version ="0.1.0"

edition ="2021"

[dependencies]
anyhow ="1"
tokio ={version ="1", features =["full"] }
serde ={version="1", features =["derive"] }
serde_json="1"
reqwest ={version ="0.12", features = ["rustls-tls"] }
chrono="0.4"
ethers ="2"
7. Buat file src/main.rs

use tokio::net::TcpListener;

use tokio::io::{AsyncBufReadExt, BufReader};
use serde::Deserialize;

use regwest::Client;

use ethers::prelude::*;

use ethers::abi::Abi;

use std::{fs, sync::Arc};

use chrono::{DateTime, Utc};

#[derive(Deserialize, Debug)]
struct SensorData {

timestamp: String,
sensor_id: String,
location: String,
process_stage: String,
temperature_celsius: f32,
humidity_percent: f32,

MODUL PRAKTIKUM

ADVANCING #
HUMANITY ’TS g@ o
s — 4

}

#[tokio::main]
async fn main() -> anyhow::Result<()>{
InfluxDB
let influx_org = "rival team";
let influx_bucket = "sensor_data";
let influx_token ="PASTE_INFLUX_TOKEN";
let influx_url = format!(
"http://localhost:8086/api/v2/write?org={}&bucket={}&precision=s",
urlencoding::encode(influx_org),
urlencoding::encode(influx_bucket)
);
let http = Client::new();

Ethereum local
// Hardhat node default: http://localhost:8545, chain_id: 31337
let provider = Provider::<Http>::try_from("http://localhost:8545")?;
let wallet: LocalWallet = "OxPASTE_PRIVATE_KEY"
.parse::<LocalWallet>()?
.with_chain_id(31337u64);
let signer = Arc::new(SignerMiddleware::new(provider, wallet));

Deploy contract from ABI + BIN
let abi_str = fs::read_to_string("build/SensorStorage.abi")?;
let bin_str =fs::read_to_string("build/SensorStorage.bin")?;
let abi: Abi = serde_json::from_str(&abi_str)?;
let bytecode = bin_str.trim().parse::<Bytes>()?;
let factory = ContractFactory::new(abi, bytecode, signer.clone());

let contract = factory.deploy(())?.send().await?;
println!(" 8 Contract deployed at: {:?}", contract.address());

let listener = TcpListener::bind("0.0.0.0:9000").await?;
println!(" 8 TCP listening on 9000...");

loop {
let (socket, addr) = listener.accept().await?;

println!(" ¥ Client connected: {}", addr);

let influx_url = influx_url.clone();

let influx_token = influx_token.to_string();
let http = http.clone();

let contract = contract.clone();

MODUL PRAKTIKUM

ADVANCING #
HUMANITY ’TS g@ o
s — 4

tokio::spawn(async move {
let reader = BufReader::new(socket);
let mut lines = reader.lines();

while let Ok(Some(line)) = lines.next_line().await {
let parsed = serde_json::from_str::<SensorData>(&line);
if parsed.is_err() {
println!(" Invalid JSON: {}", line);
continue;

}

let data = parsed.unwrap();
println!(" B& Received: {:?}", data);

// RFC3339 -> unix seconds

let ts = DateTime::parse_from_rfc3339(&data.timestamp)
.map(|dt| dt.timestamp())
.unwrap_or_else(|_| Utc::now().timestamp());

Influx write (Line Protocol)
let p = format!(
"monitoring,sensor_id={},location={},stage={}
temperature={},humidity={}{}",

data.sensor_id.replace(" ", "\"),
data.location.replace(" ", "\"),
data.process_stage.replace(" ", "\\"),
data.temperature_celsius,
data.humidity_percent,
ts

);

let resp = http
.post(&influx_url)
.header("Authorization", format!("Token {}", influx_token))

.header("Content-Type", "text/plain")

.body(lp)
.send()

.await;

match resp {
OKk(r) if r.status().is_success() => println!(" 8 InfluxDB: written"),
Ok(r) => println!(" InfluxDB status: {}", r.status()),

Err(e) => println!(" InfluxDB error: {}", e),

}

MODUL PRAKTIKUM

ADVANCING h
HUMANITY ’TS @{) =
s — -

Emit event on-chain
let temp_i = (data.temperature_celsius * 100.0) as i64;
let hum_i = (data.humidity_percent * 100.0) as i64;

let call = contract.method::<_, H256>("storeData", (
tsas ub4,
data.sensor_id.cloneg(),
data.location.clone(),
data.process_stage.clone(),
temp_i,
hum_i,

));

match call {
Ok(m) => match m.send().await {
Ok(p) => println!(" 8 Ethereum tx sent: {:?}", p),
Err(e) => println!(" Ethereum tx error: {:?}", e),
13

Err(e) => println!(" XA Contract call build error: {:?}", e),

8. Jalankan listener:

cargo run

9. Jalankan Modbus client
10. Buat folder frontend/ dan file index.html:

<!doctype htm(>
<html>
<head>

<meta charset="utf-8" />

<title>Sensor Event Monitor</title>

<script
src="https://cdn.jsdelivr.net/npm/ethers@6/dist/ethers.umd.min.js"></script
>

<script
src="https://cdn.jsdelivr.net/npm/chart.js@4/dist/chart.umd.min.js"></script
>

<link rel="stylesheet" href="style.css" />
</head>
<body>

<h1>Monitoring Sensor (Blockchain Events)</h1>

<button onclick="loadSensorData()">Load Data</button>

MODUL PRAKTIKUM

ADVANCING h
HUMANITY ’TS @{) =
s — -

<canvas id="chart" height="90"></canvas>

<table id="sensorTable">
<thead>
<tr>
<th>Time</th><th>Sensor
ID</th><th>Location</th><th>Stage</th><th>Temp</th><th>RH</th>
</tr>
</thead>
<tbody></tbody>
</table>

<script src="script.js"></script>
</body>
</html>
11. Buat style.css:

body { font-family: sans-serif; margin: 20px; background: #f9f9f9; }
table { width: 100%; border-collapse: collapse; margin-top: 14px; background:
#fff; }
th, td { border: 1px solid #ddd; padding: 8px; text-align: center; }
button { padding: 10px 14px; cursor: pointer; }
12. Buat script.js (ganti contractAddress sesuai alamat kontrak yang tercetak dari listener

Rust):

const contractAddress = "OXYOUR_CONTRACT_ADDRESS";
constabi=|[

"event DataStored(uint256 timestamp,string sensorld,string location,string
stage,int256 temperature,int256 humidity)"

I;
let chart;

async function loadSensorData() {
const provider = new ethers.BrowserProvider(window.ethereum);
await provider.send("eth_requestAccounts”, []);
const signer = await provider.getSigner();
const contract = new ethers.Contract(contractAddress, abi, signer);

const events = await contract.queryFilter(contract.filters.DataStored(), O,
"latest");

const tbody = document.querySelector("#sensorTable tbody");
tbody.innerHTML ="";

MODUL PRAKTIKUM

ADVANCING #
HUMANITY ’TS g@ o
s — 4

const labels =[];
consttemps =[];
consthums =[];

for (const e of events) {
constd =e.args;
const timeStr = new Date(Number(d.timestamp) * 1000).toLocaleString();
consttemp = Number(d.temperature) / 100;
const hum = Number(d.humidity) / 100;

tbody.innerHTML +="

<tr>
<td>${timeStr}</td>
<td>${d.sensorld}</td>
<td>${d.location}</td>
<td>${d.stage}</td>
<td>${temp.toFixed(2)}</td>
<td>${hum.toFixed(2)}</td>

</tr>

)

labels.push(timeStr);
temps.push(temp);
hums.push(hum);

}

renderChart(labels, temps, hums);

}

function renderChart(labels, temps, hums) {
const ctx = document.getElementByld("chart").getContext("2d");
if (chart) chart.destroy();

chart = new Chart(ctx, {
type: "line",
data: {
labels,
datasets: [
{label: "Temperature (°C)", data: temps },
{ label: "Humidity (%)", data: hums}
]
2
options: { responsive: true }
1;
}

13. Jalankan web dengan Live Server / npx serve, lalu buka browser dan klik Load Data.

MODUL PRAKTIKUM

ADVANCING [
HUMANITY FE8
Y

IV. PERTANYAAN PRAKTIKUM

1. Jelaskan alur data end-to-end dari pengiriman JSON sampai tampil di web (urut 4-6
langkah).

2. Dalam InfluxDB Line Protocol, mana yang jadi tag dan mana yang jadi field untuk
sensor_id,location,temperature,humidity?

3. Kalau InfluxDB sukses tapi transaksi blockchain gagal, apa dampaknya ke data dan
gimana cara meminimalkan masalah itu?

4. Kenapa queryFilter (0, "latest") bisajadi masalah kalau data makin banyak, dan
apa solusi sederhananya?

V. ANALISA & KESIMPULAN
Dari hasil percobaan terstruktur dan pertanyaan praktikum yang telah dikerjakan, buatlah
analisa dan kesimpulan dari percobaan tersebut.
Note:

Laporan praktikum terdiri dari:
7. Dasar teori

8. Prosedur praktikum

9. Hasil percobaan praktikum
10. Hasil pertanyaan praktikum
11. Analisa

12. Kesimpulan

Hasil praktikum dibuktikan oleh laporan praktikum dan percobaan praktikum yang wajib
dikerjakan secara mandiri oleh mahasiswa, segala bentuk kecurangan dan plagiarisme akan
dikenai pengurangan nilai. Laporan praktikum dikumpulkan pada folder yang telah disediakan
oleh asisten Laboratorium Elektronika.

MODUL PRAKTIKUM

