HANDBOOK

BACHELOR OF INFORMATICS PROGRAM DEPARTMENT OF INFORMATICS FACULTY OF INTELLIGENT ELECTRICAL AND INFORMATICS TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Module name	Deep Learning
Module level	Undergraduate
Code	IF1843958
Courses (if applicable)	Deep Learning
Semester	8
Contact person	
Lecturer	
Language	Bahasa Indonesia and English
Relation to curriculum	 Undergraduate degree program; mandatory; 8th semester. International undergraduate program; mandatory; 8th semester.
	2. International and graduate program, mandatory, or semester.
Type of teaching,	1. Undergraduate degree program: lectures, < 60 students,
contact hours	2. International undergraduate program: lectures, < 40 students
Workload	1. Lectures: 3 x 50 = 150 minutes (2 hours 30 minutes) per week.
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per week.
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks).
Requirements	A student must have attended at least 80% of the lectures to sit in the
according to the	exams.
examination	

regulations		
Mandatory prerequisites	Computational Intelligence	
	After completing this module, a student is expected to:	

Learning outcomes and their corresponding	CO1 Students are able to explain the theory, principles, and various models of deep learning.	PLO3
PLOs	CO2 Students are able to use appropriate deep learning model to solve various learning problems, such as single modal learning, multimodal learning, and generative model learning.	PLO3
	CO3 Students are able to create programs to solve real world problems using appropriate in-depth learning algorithms.	PLO3
	CO4 Students are able to conduct independent research on a particular topic, write a research report with a small scope, and make a presentation.	PLO3
	CO5 Students are able to criticize various methods to solve real world problems using deep learning	
Content	Knowledge: Mastering concept and principles of Intelligent System surepresentation and reasoning techniques, searching techniques, and development agent, data mining, machine learning, and development application in various fields, and also mastering and principles of computation science such as manage infimultimedia data processing, and numerical analysis. Specific Skill: Able to design and develop applications using principles of systems and computing science to produce intelligent applications fields.	nique, elopment of g concept formation, of intelligent
Study and examination requirements and forms of examination	Mid-terms examination and Final examination.	
Media employed	LCD, whiteboard, websites, books (as references), etc.	
Assessments and Evaluation	CO1: Problem 1 in mid-term exam (5%) and exercise 1 (5%) 10% CO2: Problem 2 in mid-term exam (5%) and exercise 2 (5%)	

	CO3: Problem 3 in mid-term exam (5%); problem 4 in mid-term exam (5%); assignment 1: make an algorithm and computer program (5%); and exercise 3 (5%) - 20% CO4: Problem 5 in mid-term exam (5%); problem 1 in final exam (5%) and exercise 4 (5%) - 15% CO5: Problem 2 in final exam (5%); assignment 2: make a function and recursive (5%); and exercise 5 (5%) - 15% CO6: Problem 3 in final exam (5%) and exercise 6 (5%) - 10%
	CO7: Problem 4 in final exam (5%) and exercise 7 (5%) - 10% CO8: Problem 5 in final exam (5%) and assignment 3: make a program based on a real-life problem (5%) - 10%
Reading List	Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press Book, 2017.